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Abstract 

We describe a method of mapping linear arithmetic functions to a targeted network of multipliers, adders, registers, 

muxes, and ROMs holding coefficients. The network may be fairly specific, or made more configurable by varying the 

primitives’ control signals and adding routing muxes. Examples of possible functions include FIR and IIR filters, 

convolution, and FFTs. The method implicitly considers rewriting the function, such as by the associative and 

distributive properties of arithmetic, or methods such as Winograd filtering that benefit from combined computation of 

successive outputs. The method is intended to be used to implement IP for existing FPGA math blocks, evaluate new 

FPGA math block architectures, or potentially as a subroutine in high-level synthesis. Illustrative architectures using the 

PolarFire
TM

 FPGA math block are presented, including: a symmetric FIR in which the math block operates at twice the 

speed of the fabric; a general (asymmetric) FIR that produces one sample per clock cycle with fewer multipliers than 

taps; and a folded symmetric FIR using fewer memory blocks than multipliers. The method is related to modulo 

scheduling and relies on a SAT or ILP solver. 

 

1 Introduction 

The primary motivation for this work is the need to 

efficiently map linear functions to the math blocks in 

field-programmable gate arrays (FPGAs). Examples of 

linear functions are finite- and infinite-impulse-response 

(FIR and IIR) filters, 1D and 2D convolution, and fast 

Fourier transforms (FFTs). We focus on streaming 

computation, where the function is applied to an input 

stream of incoming data to produce an output stream of 

results. 

   Figure 1: PolarFire
TM

 FPGA math block (simplified). 

 

As an example, consider the simplified model of the 

PolarFire
TM

 FPGA math block [1] in Figure 1. The 

components include: a pre-adder; multiplier; adder; 

dynamically-controlled muxes; read-only memory for 

coefficient storage; shifter; and various registers. (For 

details, see Section 5 below.) Can we configure a cascade 

of N of these blocks, if necessary in conjunction with 

limited resources from the adjacent general-purpose 

FPGA fabric, to implement a 4N-tap symmetric FIR filter 

with a sample interval of two clock cycles? How about a 

(4N/3)-tap general FIR with one cycle per sample? If yes, 

how should the various muxes, registers and coefficient 

ROMs be configured and controlled? If not, can we be 

sure we have not overlooked a solution? We present an 

algorithm to answer such questions. It considers 

equivalent ways of rewriting the desired function, beyond 

what typical commercial synthesis tools can do. 

Numerous authors have studied related problems. The 

problem of scheduling a streaming data flow graph to 

accommodate the operator delays and resource limits is 

generally known as “modulo scheduling”. Opperman et 

al. [2] use integer linear programming (ILP) to optimally 

solve the problem. Dai and Zhang [3] develop a more 

scalable but still exact algorithm. These approaches do 

not seek to rearrange the flow graph. Canis et al. [4] apply 

heuristics to transform the flow graph using the 

associative property of addition, but this is not an exact 

algorithm. The flow graph may also be “folded” to reduce 

resources at the expense of sample rate; see [5] for a 

recent example. Winograd [6] describes how 

multiplications can be saved at the expense of additions 

by joint computation of successive outputs. Gao et al. [7] 

give a method to rewrite arithmetic expressions using the 

associative and distributive properties to achieve pareto 

optimal resources and accuracy when using floating point. 

However this method does not (at least in its present 

form) consider optimizations across successive outputs. 

The above mentioned work assumes unrestricted 

connectivity among the operators. In contrast, mapping 

programs, such as [8] and [9] and the prior work cited 

therein, assign specific routing resources needed to 

connect the operators in a targeted architecture. However 

these works do not support rewriting. In part this is due to 

the difficulty of precluding combinatorial loops in the 

routing. 

The main contribution of this paper (Sections 3 and 4) is a 

conceptually straightforward algorithm to map a linear 
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expression into targeted configurable logic. It implicitly 

considers folding, associative and distributive rewriting, 

as well as savings from joint computation of successive 

outputs in the manner of Winograd filtering.
†
 If a solution 

exists, it will generate a complete description of the 

necessary routing configuration and control signal 

schedules. If a solution is not found, we can be confident 

none was overlooked (at least under the given constraints 

and for the targeted logic). The current implementation 

uses a SAT solver. 

The algorithm can potentially be used by: 

 FPGA manufacturers to propose and rapidly 

evaluate new math block hardware. 

 IP developers to automatically generate DSP 

designs. 

 End-users to implement specific desired 

functions in FPGAs. 

 HLS algorithm developers as a subroutine. 

Examples of novel mappings produced using the 

algorithm are given in Section 6. (These may be of 

interest in their own right.) 

Other contributions include: 

 A way to extend data flow graph mappers to 

support the limited rewriting possible using the 

associative property (Section 2). 

 A more flexible way to prohibit combinatorial 

loops during mapping (Section 4). 

2 A Way to Support Associative 

Rewriting 

Before moving to our main results, we describe a possible 

trick we considered to add support for associative 

rewriting to conventional data flow graph (DFG) mappers 

such as [9].  

       Figure 2: Intermediate operator order graph. 

                                                 
†
 We note that these kinds of rewriting can affect results 

when computing with finite precision, but they are 

nevertheless useful in many practical contexts. 

Suppose the DFG calls for a sum of N values.  Rather 

than specify an arbitrary order of summation in the DFG 

and map it directly to the “modulo routing resource 

graph” (MRRG) [9], we introduce an intermediate 

operator order graph (IOOG) as shown in Figure 2. 

Boolean variables are added to specify which data value 

or previous adder output drives each adder input in the 

IOOG. The usual constraints on fanout and fanin are 

added to ensure the result is a binary tree of N-1 adders. 

The IOOG can then be mapped to the MRRG in the usual 

way. 

Unfortunately this approach cannot be extended to 

support more general types of rewriting. 

3 Problem Statement 

The setting of the problem is depicted in Figure 3. We 

have an input stream of data values, an output stream of 

results, and a targeted set of configurable logic, described 

by a network including primitives of these types: 

 Input and Output 

 Multiplier: One input is a sum of constants, the 

other a sum of data values. 

 Adder, Subtractor 

 Coefficient ROM: Outputs one or a specified 

sum of coefficients in response to an address. 

 Register, with enable and clear. 

 Mux, with dynamic select. 

 Routing Mux, with static select. 

 Delay line, with a static delay value. 

 Addressable shift register (ASR), with a dynamic 

read address.  

                           Figure 3:  Problem setting. 

           Figure 4:  Two possible ASR implementations. 
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Figure 4 shows how an ASR can be implemented in a 

simple way using a shift register and a mux, or in a more 

complicated but power-efficient way using a decrementer, 

adder, and two-port RAM. In some cases a single-port 

RAM may be used if it supports simultaneous write and 

read (in either order) using the same address. 

All control signals (enables, clears, selects, addresses) are 

periodic functions with a period P, and are independent of 

the data values. 

We are given: 

 The targeted configurable logic network. 

 A linear function of the form 

𝐹(𝑋0,  𝑋1,  …  𝑋𝑁−1) = ∑ 𝐶𝑖𝑋𝑖
𝑁−1

𝑖=0
 

where 𝑋𝑖 are a portion of the incoming data 

stream and 𝐶𝑖 are symbolic (arbitrary) constants. 

 The period P (analogous to the initiation interval 

in modulo scheduling). 

 The phases (in clock cycles or time steps) during 

the period when output samples must be 

produced.  

 A range of allowable latencies. 

 Any additional optional constraints, e.g. 

regarding symmetries among the control signals. 

We wish to find: 

 A specific latency. 

 A schedule of all control signals. 

 A symbolic simulation trace confirming proper 

computation of the function. 

 … or a demonstration that no solution exists. 

4 Algorithm Sketch 

Conceptually, we formulate the problem as a mixed 

integer linear program. At a time step t, the output of a 

primitive p takes the value 

∑ 𝐾𝑖𝑡𝑝𝐶𝑖
𝑖

+∑ 𝐾𝑗𝑡𝑝𝑋𝑗
𝑗

+∑ 𝐾𝑖𝑗𝑡𝑝𝐶𝑖𝑋𝑗
𝑖,𝑗

 

where the various K are real-valued variables. 

Alternatively, if a Boolean variable Itp is true, the output 

is considered invalid. We also define a Boolean variable 

to indicate the state of each control signal at each time 

step. 

For each primitive in the targeted architecture, we add 

constraints on the variables for its inputs, outputs and 

control signals that ensure the proper relationship among 

them. For example, consider a 2-input mux and the 

following variables for a particular time step: 

 S: indicating the state of the select input  

 Kin0: one of the real-valued K variables for input 

0 

 Kout: the corresponding K variable for the mux 

output 

 Iin0: the Boolean variable indicating invalid data 

at input 0 

 Iout: the Boolean variable indicating invalid data 

at the output 

We impose the constraint that if S is false (selecting input 

0) then Kout = Kin0 and Iout = Iin0. As another example, for a 

two-input adder we have Kout = Kin0+Kin1 and Iout = 

OR(Iin0,Iin1). With some care, it is straightforward to 

define appropriate constraints in a similar way for all the 

primitives. 

We also add constraints imposing that the desired terms 

(and only the desired terms) are present at the desired 

time(s) on the output. But what range of times must we 

consider? 

Claim: If we can show that the output assumes the 

proper values during one period, then this will also be 

true of all prior and subsequent periods. 

Proof: By induction. We rely on the fact that all 

control signals and data arrival/departure times are 

periodic and independent of the data values. 

The claim allows us to limit consideration to one period. 

It also allows us to restrict consideration to only the Xi 

values that must appear at the output during that period. 

Any prior or subsequent Xi values can just be treated as 

invalid, without further distinction. 

The variables K are created selectively by propagating 

from the appearance of the required output values 

backward in space and time. Care must be taken to 

provide variables for all terms that might be required to 

support rewriting involving multiple outputs. 

One additional complication must be handled: the need to 

avoid combinatorial loops (which if present might allow a 

value to appear out of nowhere). These can be avoided by 

first decomposing the architecture into strongly-connected 

components of combinational primitives, and then adding 

constraints among the variables specifying the state of the 

select inputs of the muxes in each such component, for 

instance using the techniques described in [10]. 

Our initial implementation uses an ordinary SAT solver 

(specifically MiniSAT) rather than ILP. This makes it 

inconvenient to support many possible choices for each K. 

However, SAT can easily support three choices of K 

(specifically -1, 0 and 1), using two Boolean variables. 

This suffices for the results we demonstrate below. (We 

discuss in Section 7 how this can be generalized.) 

5 PolarFire
TM

 FPGA Math Block 

To exemplify the use of the algorithm, we will target the 

normal mode of the PolarFire
TM

 FPGA math block, 

shown in Figure 1. It includes an 18-bit pre-adder (with 

19-bit output) and an 18x19 bit multiplier. The final adder 

is 48 bits, and includes a carry input and overflow output 

(not shown). The adder and pre-adder also support 

subtraction. An 18-bit, 16-word read-only memory is 

provided for coefficient storage. A shifter allows multiple 

blocks to be combined into wider multipliers. The 

registers support independent enable and (synchronous 
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and asynchronous) clear inputs. Each register may also be 

bypassed (made transparent). For further details see [1]. 

The math block also supports two reduced precision 

modes (not shown): 

 A two-element, 9-bit dot-product, including use 

of the pre-adder and final adder. 

 Dual independent 9x9 bit multipliers. 

The reduced precision modes are useful for video and 

especially neural network applications [11].  

The primitives shown in blue are implemented by 

hardened circuitry for optimum speed, power and area. 

The green primitives provide additional flexibility. They 

are implemented by LUTs and registers typical of those in 

the fabric except that they are located adjacent to the math 

block and can be connected to it and each other via direct 

routes. For this reason routing delays among the blue and 

green primitives are still fast and predictable. 

6 Examples 

In this section we give a few example applications that 

were developed with the help of the algorithm. We don’t 

claim that these were discovered purely by applying the 

algorithm in one shot. Some human insight and trial and 

error was required. But the algorithm was indispensable 

to prove that the applications can be mapped as shown. 

6.1 Double Data Rate Symmetric FIR 

Figure 5 shows how a symmetric 4N-tap FIR filter can be 

implemented in N PolarFire
TM

 math blocks. The period is 

two clock cycles, with one sample per period at both the 

input and output. 

The logic includes an input, output, adders, multipliers, 

muxes (with dynamic selects), ROMs for the coefficients, 

and registers (each with an enable signal). There are also 

a routing mux and optional registers, shown with dotted 

borders. Recall that we have fast and predictable routing 

delays among the blue primitives (implemented in hard 

circuitry) and green primitives (implemented using 

directly-connected adjacent LUTs and flip-flops in the 

fabric).  In contrast, the primitives shown here in red are 

implemented in the remainder of the fabric, and routing 

delays among them are less predictable. So we add a 

constraint that the red sequential elements can be enabled 

(simultaneously) only on alternate clock cycles. This 

allows the math block to be clocked at twice the rate that 

can be supported by general fabric routing.  

Determining manually whether and how all the control 

signals and coefficient addresses can be set properly 

would be difficult, especially considering the various 

possible remainders when the number of taps is divided 

by four, and cases of odd and even symmetry. No user, or 

even IP developer, would relish working through this. 

Figure 6 shows the schedule of control signals and 

execution trace reported by the algorithm for the case of 

11 taps. Observe that the B2 and R registers are enabled 

in synchrony and only on alternate clock cycles, as 

required for double data rate operation. 

6.2 Winograd FIR Filter  

Consider two successive outputs from a 2-tap FIR filter, 

normally computed using four multiplication operations: 

 

𝑌0 = 𝐶0𝑋0 + 𝐶1𝑋1 

𝑌1 = 𝐶0𝑋1 + 𝐶1𝑋2 

 

As Winograd observed in [6], these can be rewritten as 

follows using only three multiplications: 

 

𝐷 = 𝐶0(𝑋0 − 𝑋1) 
𝐸 = 𝑋1(𝐶0 + 𝐶1) 
𝐹 = −𝐶1(𝑋1 − 𝑋2) 

𝑌0 = 𝐷 + 𝐸 

𝑌1 = 𝐸 + 𝐹 

 

Using our algorithm, we have found an efficient way to 

leverage this trick to implement a general T-tap FIR filter 

in N = (3/4)T math blocks, shown in Figure 7. The period 

is 2 clock cycles, but a sample is produced every clock 

cycle. The implementation requires a fixed delay of 1 or 4 

clock cyles depending on the remainder T mod 4. This is 

represented by the indicated delay line. The solution uses 

the 3
rd

 addend input C provided by the PolarFire
TM

 math 

block to reduce the total latency. The schedule of control 

signals and trace is shown in Figure 8. 

6.3 Folded Symmetric FIR with Few RAMs 

Many forms of folded FIRs are known in the literature. 

Here we show that the algorithm can generate a 

particularly intricate one that can support folding while 

still benefiting from symmetrical coefficients, and without 

requiring a separate RAM block for each multiplier. It 

relies for its proper operation on the folding factor F and 

number of multipliers N being relatively prime (i.e., 

having no common factors other than one). The structure 

requires one RAM for the forward ASR and min{F,N} 

RAMs for the reverse ASRs. The filter is depicted in 

Figure 9 and the schedule and trace in Figure 10. 

7 Limitations and Future Work 

As mentioned above, our initial implementation used a 

SAT solver, and for convenience we limited the values of 

the variables K to -1, 0 or 1. To handle more complex 

Winograd filter schemes, we would need to support other 

values of K. A larger but still finite selection of values 

could be supported with SAT by using more Boolean 

variables to encode the value. Using ILP or SAT modulo 

theory (SMT) solvers would support all real values. 

This work assumed that any combinational path through 

the target architecture would have a sufficiently small 

delay so as not to exceed the target clock frequency 

(which is reasonable for FPGA math blocks). Additional 
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constraints on the mux select variables could be added to 

ensure this, as is done in modulo scheduling.  

Any time SAT or ILP solvers are used, run time may be 

an issue. Typical FPGA DSP structures are organized as a 

chain of identical units. We have found that the addition 

of a few corresponding symmetry constraints on control 

variables can significantly reduce run time. It may also be 

possible to further leverage the symmetry by considering 

only the first unit, last unit, and a representative unit in 

the middle of the chain to reduce the problem size. The 

approach of [3], combining SAT with a linear constraint 

solver to achieve scalability, might also be investigated.  

Despite these limitations, we have already found the 

current implementation to be very helpful in our own 

work generating IP for existing math blocks and 

evaluating architectures for new ones. 
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Figure 5: Structure of double data rate FIR. 

 

Node Variable phase=0 phase=1

A[0-2] enable 1 1

B1[0-2] enable 1 1

B2[0-1] enable 0 1

B2[2] enable 0 0

B3[0-2] enable 1 0

Bmux[0] select B3[0] Input

Bmux[1] select B3[1] B2[0]

Bmux[2] select B3[2] B2[1]

D[0-2] enable 1 1

Dmux select Zero Rmux

Input valid 0 1

P[0-2] enable 1 1

Pmux[0] select Zero P[0]

Pmux[1] select P[0] P[1]

Pmux[2] select P[1] P[2]

R[0-4] enable 0 1

Rmux route R[3] R[3]

Rom[0] coeff C1 C0

Rom[1] coeff C3 C2

Rom[2] coeff C5 C4  

Time Phase Input B1[0] D[0] P[0] B1[1] D[1] P[1] B1[2] D[2] P[2]

1 1 X0 0

2 0 X0

3 1 X1 0

4 0 X1

5 1 X2 X0 0

6 0 X2

7 1 X3 X1 0

8 0 X3 X0

9 1 X4 X2 0

10 0 X4 X1

11 1 X5 X3 X0 0

12 0 X5 X2

13 1 X6 X4 X1 0

14 0 X6 X3 X0

15 1 X7 X5 X2 0

16 0 X7 X4 X1

17 1 X8 X6 X3 X0 0

18 0 X8 X5 X2 X0

19 1 X9 X7 X4 X0 X1 0

20 0 X9 X6 X0 X3

21 1 X10 X8 X0 X5 X1 X2 0

22 0 X10 X0 X7 X4

23 1 X9 X1 C0X0+C0X10 X6 X3 0

24 0 X1

C0X0+C1X1 

+C1X9+C0X10 X8 X2 X5

25 1 X7 X3

C0X0+C1X1+C2X2 

+C2X8+C1X9+C0X10 X4 0

26 0 X9 X3

C0X0+C1X1+C2X2 

+C3X3+C3X7+C2X8 

+C1X9+C0X10 X6 X4

27 1 X5 0

C0X0+C1X1+C2X2+C3X3 

+C4X4+C4X6+C3X7+C2X8 

+C1X9+C0X10

28 0

C0X0+C1X1+C2X2+C3X3 

+C4X4+C5X5+C4X6+C3X7 

+C2X8+C1X9+C0X10  

           Figure 6: Schedule and trace for double data rate 11-tap symmetric FIR in 3 math blocks. 

 

 

 



7 

 

 

 

B3

zero

ROM

x

+

B1A

P

�     blocks

B2

input +

B3

ROM

x

+

B1A

P

B2

C

output

ROM

x

+

B1A

P

S

ROM

x

+

B1A

P

�      blocks

……

delay

zero

-

 

Figure 7: Structure of Winograd FIR filter. 

 

Node Variable phase=0 phase=1

A[0-5] enable 1 1

B1[0] enable 0 1

B1[1] enable 0 1

B1[2] enable 1 1

B1[3] enable 1 1

B1[4] enable 1 1

B1[5] enable 1 1

B2[0] enable 0 1

B2[2] enable 1 1

B2[3] enable 1 1

B2[4] enable 1 1

B3[0] enable 0 1

B3[2] enable 1 1

B3[3] enable 1 1

B3[4] enable 1 1

C enable 0 1

Delay enable 1 1

Delay addr 0 0

Input valid 1 0

P[0-5] enable 1 1

Pmux[0] select P[0] Zero

Pmux[1] select P[1] P[0]

Rom[0] coeff C4+C5 C6+C7

Rom[1] coeff C0+C1 C2+C3

Rom[2] coeff C6 -C7

Rom[3] coeff -C5 C4

Rom[4] coeff C2 -C3

Rom[5] coeff -C1 C0

S enable 1 1

Time Phase Input B1[0] P[0] B1[1] P[1] C B1[2] P[2] B1[3] P[3] B1[4] P[4] B1[5] P[5]

0 0 X0

1 1 X1

2 0 X2 X1

3 1 X3 X1 X0-X1

4 0 X4 X3 X1-X2

5 1 X5 X3 X2-X3

6 0 X6 X5 X3-X4 X0-X1

7 1 X7 X5 X4-X5 X1-X2

8 0 X8 X7 C4X5+C5X5 X1 X5-X6 X2-X3

9 1

C4X5+C5X5 

+C6X7+C7X7 X1 X6-X7 X3-X4 X0-X1

10 0 X3

C0X1+C1X1 

+C4X5+C5X5 

+C6X7+C7X7 X7-X8

C6X6 -

C6X7 X4-X5 X1-X2

11 1 X3

C0X1+C1X1 

+C2X3+C3X3 

+C4X5+C5X5 

+C6X7+C7X7

-C7X7 

+C7X8 X5-X6

C4X4-C4X5 

+C6X6-C6X7 X2-X3

12 0

C0X1+C1X1 

+C2X3+C3X3 

+C4X5+C5X5 

+C6X7+C7X7

-C5X5+C5X6 

-C7X7+C7X8 X3-X4

C2X2-C2X3 

+C4X4-C4X5 

+C6X6-C6X7 X0-X1

13 1

C0X1+C1X1 

+C2X3+C3X3 

+C4X5+C5X5 

+C6X7+C7X7

-C3X3+C3X4 

-C5X5+C5X6 

-C7X7+C7X8 X1-X2

C0X0+C1X1 

+C2X2+C3X3 

+C4X4+C5X5 

+C6X6+C7X7

14 0

C0X1+C1X2 

+C2X3+C3X4 

+C4X5+C5X6 

+C6X7+C7X8  

        Figure 8: Schedule and trace for 8-tap general (asymmetric) Winograd FIR filter in 6 math blocks. 

 



8 

 

zero

input

+

ROM

x

+

B1

B2

DA

P

+

ROM

x

+

B1

B2

DA

P

+

ROM

x

+

B1 DA

P

output

Block 0 Block F-1 Block N-1

RevASR[0]FwdASR

…

+

ROM

x

+

B1

B2

DA

P

Block i

from 
RevASR[i%F]

……

from 
RevASR[(N-1)%F]

zeroRevASR[F-1]

Figure 9: Structure of symmetric folded FIR with fewer RAMs than math blocks. 

Node Variable phase=0 phase=1

A[0-2] enable 1 1

B1[0-2] enable 1 1

B2[0-1] enable 1 1

D[0-2] enable 1 1

Dmux select RevASR[0] RevASR[0]

FwdASR enable 1 0

FwdASR addr 3 0

Input valid 1 0

P[0-2] enable 1 1

Pmux select Zero P[2]

RevASR[0] enable 1 0

RevASR[0] addr 8 9

RevASR[1] enable 1 0

RevASR[1] addr 5 12

Rom[0] coeff C3 C1

Rom[1] coeff C5 C0

Rom[2] coeff C4 C2

Time Phase Input B1[0] D[0] P[0] B1[1] D[1] P[1] B1[2] D[2] P[2]

6 0 X0

7 1

8 0 X1

9 1

10 0 X2 X1

11 1

12 0 X3 X2 X1

13 1

14 0 X4

15 1 X0

16 0 X5

17 1 X1 X0

18 0 X6 X5

19 1 X2 X1 X0

20 0 X7 X6 X5

21 1 X3 X2 X1

22 0 X8 X7 X6

23 1 X4 X3 X2

24 0 X9 X7

25 1 X5 X0 X4 X3 X3 X0

26 0 X10 X9 X7 X0

27 1 X6 X5 X4

28 0 X11 X10 X1 X9

29 1 X7 X2 C1X1+C1X10 X6 X5 X5 X2

30 0 X11 X2 X10

C1X1+C5X5 

+C5X6+C1X10 X9 X2

31 1 X8 X3 X7 X6

C1X1+C2X2+C5X5 

+C5X6+C2X9+C1X10

32 0

C1X1+C2X2+C3X3 

+C5X5+C5X6+C3X8 

+C2X9+C1X10 X11 X0 X10 X3

33 1

C0X0+C1X1 

+C2X2+C3X3 

+C5X5+C5X6 X7 X4

34 0

C0X0+C1X1+C2X2 

+C3X3+C4X4+C5X5 

+C5X6+C4X7+C3X8 

+C2X9+C1X10+C0X11  

          Figure 10: Schedule and trace for 12-tap symmetric FIR folded by 2, in 3 math blocks and 3 RAMs. 


