
1

Exact Mapping of Rewritten Linear Functions to Configurable Logic

Jonathan W. Greene, Microsemi, San Jose, CA, USA (jonathan.greene@microchip.com)

Abstract

We describe a method of mapping linear arithmetic functions to a targeted network of multipliers, adders, registers,

muxes, and ROMs holding coefficients. The network may be fairly specific, or made more configurable by varying the

primitives’ control signals and adding routing muxes. Examples of possible functions include FIR and IIR filters,

convolution, and FFTs. The method implicitly considers rewriting the function, such as by the associative and

distributive properties of arithmetic, or methods such as Winograd filtering that benefit from combined computation of

successive outputs. The method is intended to be used to implement IP for existing FPGA math blocks, evaluate new

FPGA math block architectures, or potentially as a subroutine in high-level synthesis. Illustrative architectures using the

PolarFire
TM

 FPGA math block are presented, including: a symmetric FIR in which the math block operates at twice the

speed of the fabric; a general (asymmetric) FIR that produces one sample per clock cycle with fewer multipliers than

taps; and a folded symmetric FIR using fewer memory blocks than multipliers. The method is related to modulo

scheduling and relies on a SAT or ILP solver.

1 Introduction

The primary motivation for this work is the need to

efficiently map linear functions to the math blocks in

field-programmable gate arrays (FPGAs). Examples of

linear functions are finite- and infinite-impulse-response

(FIR and IIR) filters, 1D and 2D convolution, and fast

Fourier transforms (FFTs). We focus on streaming

computation, where the function is applied to an input

stream of incoming data to produce an output stream of

results.

 Figure 1: PolarFire
TM

 FPGA math block (simplified).

As an example, consider the simplified model of the

PolarFire
TM

 FPGA math block [1] in Figure 1. The

components include: a pre-adder; multiplier; adder;

dynamically-controlled muxes; read-only memory for

coefficient storage; shifter; and various registers. (For

details, see Section 5 below.) Can we configure a cascade

of N of these blocks, if necessary in conjunction with

limited resources from the adjacent general-purpose

FPGA fabric, to implement a 4N-tap symmetric FIR filter

with a sample interval of two clock cycles? How about a

(4N/3)-tap general FIR with one cycle per sample? If yes,

how should the various muxes, registers and coefficient

ROMs be configured and controlled? If not, can we be

sure we have not overlooked a solution? We present an

algorithm to answer such questions. It considers

equivalent ways of rewriting the desired function, beyond

what typical commercial synthesis tools can do.

Numerous authors have studied related problems. The

problem of scheduling a streaming data flow graph to

accommodate the operator delays and resource limits is

generally known as “modulo scheduling”. Opperman et

al. [2] use integer linear programming (ILP) to optimally

solve the problem. Dai and Zhang [3] develop a more

scalable but still exact algorithm. These approaches do

not seek to rearrange the flow graph. Canis et al. [4] apply

heuristics to transform the flow graph using the

associative property of addition, but this is not an exact

algorithm. The flow graph may also be “folded” to reduce

resources at the expense of sample rate; see [5] for a

recent example. Winograd [6] describes how

multiplications can be saved at the expense of additions

by joint computation of successive outputs. Gao et al. [7]

give a method to rewrite arithmetic expressions using the

associative and distributive properties to achieve pareto

optimal resources and accuracy when using floating point.

However this method does not (at least in its present

form) consider optimizations across successive outputs.

The above mentioned work assumes unrestricted

connectivity among the operators. In contrast, mapping

programs, such as [8] and [9] and the prior work cited

therein, assign specific routing resources needed to

connect the operators in a targeted architecture. However

these works do not support rewriting. In part this is due to

the difficulty of precluding combinatorial loops in the

routing.

The main contribution of this paper (Sections 3 and 4) is a

conceptually straightforward algorithm to map a linear

+

ROM

x

+

B1

B2B3

DA

P

to next
block

from
previous

block

from
previous

block

to next
block

C

to/from general purpose logic fabric

>>0

Author’s draft. To appear in Proceedings of the 2018 Workshop on FPGAs for Software Programmers.

2

expression into targeted configurable logic. It implicitly

considers folding, associative and distributive rewriting,

as well as savings from joint computation of successive

outputs in the manner of Winograd filtering.
†
 If a solution

exists, it will generate a complete description of the

necessary routing configuration and control signal

schedules. If a solution is not found, we can be confident

none was overlooked (at least under the given constraints

and for the targeted logic). The current implementation

uses a SAT solver.

The algorithm can potentially be used by:

 FPGA manufacturers to propose and rapidly

evaluate new math block hardware.

 IP developers to automatically generate DSP

designs.

 End-users to implement specific desired

functions in FPGAs.

 HLS algorithm developers as a subroutine.

Examples of novel mappings produced using the

algorithm are given in Section 6. (These may be of

interest in their own right.)

Other contributions include:

 A way to extend data flow graph mappers to

support the limited rewriting possible using the

associative property (Section 2).

 A more flexible way to prohibit combinatorial

loops during mapping (Section 4).

2 A Way to Support Associative

Rewriting

Before moving to our main results, we describe a possible

trick we considered to add support for associative

rewriting to conventional data flow graph (DFG) mappers

such as [9].

 Figure 2: Intermediate operator order graph.

†
 We note that these kinds of rewriting can affect results

when computing with finite precision, but they are

nevertheless useful in many practical contexts.

Suppose the DFG calls for a sum of N values. Rather

than specify an arbitrary order of summation in the DFG

and map it directly to the “modulo routing resource

graph” (MRRG) [9], we introduce an intermediate

operator order graph (IOOG) as shown in Figure 2.

Boolean variables are added to specify which data value

or previous adder output drives each adder input in the

IOOG. The usual constraints on fanout and fanin are

added to ensure the result is a binary tree of N-1 adders.

The IOOG can then be mapped to the MRRG in the usual

way.

Unfortunately this approach cannot be extended to

support more general types of rewriting.

3 Problem Statement

The setting of the problem is depicted in Figure 3. We

have an input stream of data values, an output stream of

results, and a targeted set of configurable logic, described

by a network including primitives of these types:

 Input and Output

 Multiplier: One input is a sum of constants, the

other a sum of data values.

 Adder, Subtractor

 Coefficient ROM: Outputs one or a specified

sum of coefficients in response to an address.

 Register, with enable and clear.

 Mux, with dynamic select.

 Routing Mux, with static select.

 Delay line, with a static delay value.

 Addressable shift register (ASR), with a dynamic

read address.

 Figure 3: Problem setting.

 Figure 4: Two possible ASR implementations.

+

X1 XNX2

From any Xi

...

To any later adder

+

From any Xi or any
previous adder

Sum

...

Adder 1

Adder N-1

{

{

+

ROM

x

V VV

MUX ASR

X0, X1, …
Y0, Y1, …

v
v

v

...

decrementer

adder

data

... 1
 0

addr

data

addr

wdata
waddr

RAM

raddr
rdata

3

Figure 4 shows how an ASR can be implemented in a

simple way using a shift register and a mux, or in a more

complicated but power-efficient way using a decrementer,

adder, and two-port RAM. In some cases a single-port

RAM may be used if it supports simultaneous write and

read (in either order) using the same address.

All control signals (enables, clears, selects, addresses) are

periodic functions with a period P, and are independent of

the data values.

We are given:

 The targeted configurable logic network.

 A linear function of the form

𝐹(𝑋0, 𝑋1, … 𝑋𝑁−1) = ∑ 𝐶𝑖𝑋𝑖
𝑁−1

𝑖=0

where 𝑋𝑖 are a portion of the incoming data

stream and 𝐶𝑖 are symbolic (arbitrary) constants.

 The period P (analogous to the initiation interval

in modulo scheduling).

 The phases (in clock cycles or time steps) during

the period when output samples must be

produced.

 A range of allowable latencies.

 Any additional optional constraints, e.g.

regarding symmetries among the control signals.

We wish to find:

 A specific latency.

 A schedule of all control signals.

 A symbolic simulation trace confirming proper

computation of the function.

 … or a demonstration that no solution exists.

4 Algorithm Sketch

Conceptually, we formulate the problem as a mixed

integer linear program. At a time step t, the output of a

primitive p takes the value

∑ 𝐾𝑖𝑡𝑝𝐶𝑖
𝑖

+∑ 𝐾𝑗𝑡𝑝𝑋𝑗
𝑗

+∑ 𝐾𝑖𝑗𝑡𝑝𝐶𝑖𝑋𝑗
𝑖,𝑗

where the various K are real-valued variables.

Alternatively, if a Boolean variable Itp is true, the output

is considered invalid. We also define a Boolean variable

to indicate the state of each control signal at each time

step.

For each primitive in the targeted architecture, we add

constraints on the variables for its inputs, outputs and

control signals that ensure the proper relationship among

them. For example, consider a 2-input mux and the

following variables for a particular time step:

 S: indicating the state of the select input

 Kin0: one of the real-valued K variables for input

0

 Kout: the corresponding K variable for the mux

output

 Iin0: the Boolean variable indicating invalid data

at input 0

 Iout: the Boolean variable indicating invalid data

at the output

We impose the constraint that if S is false (selecting input

0) then Kout = Kin0 and Iout = Iin0. As another example, for a

two-input adder we have Kout = Kin0+Kin1 and Iout =

OR(Iin0,Iin1). With some care, it is straightforward to

define appropriate constraints in a similar way for all the

primitives.

We also add constraints imposing that the desired terms

(and only the desired terms) are present at the desired

time(s) on the output. But what range of times must we

consider?

Claim: If we can show that the output assumes the

proper values during one period, then this will also be

true of all prior and subsequent periods.

Proof: By induction. We rely on the fact that all

control signals and data arrival/departure times are

periodic and independent of the data values.

The claim allows us to limit consideration to one period.

It also allows us to restrict consideration to only the Xi

values that must appear at the output during that period.

Any prior or subsequent Xi values can just be treated as

invalid, without further distinction.

The variables K are created selectively by propagating

from the appearance of the required output values

backward in space and time. Care must be taken to

provide variables for all terms that might be required to

support rewriting involving multiple outputs.

One additional complication must be handled: the need to

avoid combinatorial loops (which if present might allow a

value to appear out of nowhere). These can be avoided by

first decomposing the architecture into strongly-connected

components of combinational primitives, and then adding

constraints among the variables specifying the state of the

select inputs of the muxes in each such component, for

instance using the techniques described in [10].

Our initial implementation uses an ordinary SAT solver

(specifically MiniSAT) rather than ILP. This makes it

inconvenient to support many possible choices for each K.

However, SAT can easily support three choices of K

(specifically -1, 0 and 1), using two Boolean variables.

This suffices for the results we demonstrate below. (We

discuss in Section 7 how this can be generalized.)

5 PolarFire
TM

 FPGA Math Block

To exemplify the use of the algorithm, we will target the

normal mode of the PolarFire
TM

 FPGA math block,

shown in Figure 1. It includes an 18-bit pre-adder (with

19-bit output) and an 18x19 bit multiplier. The final adder

is 48 bits, and includes a carry input and overflow output

(not shown). The adder and pre-adder also support

subtraction. An 18-bit, 16-word read-only memory is

provided for coefficient storage. A shifter allows multiple

blocks to be combined into wider multipliers. The

registers support independent enable and (synchronous

4

and asynchronous) clear inputs. Each register may also be

bypassed (made transparent). For further details see [1].

The math block also supports two reduced precision

modes (not shown):

 A two-element, 9-bit dot-product, including use

of the pre-adder and final adder.

 Dual independent 9x9 bit multipliers.

The reduced precision modes are useful for video and

especially neural network applications [11].

The primitives shown in blue are implemented by

hardened circuitry for optimum speed, power and area.

The green primitives provide additional flexibility. They

are implemented by LUTs and registers typical of those in

the fabric except that they are located adjacent to the math

block and can be connected to it and each other via direct

routes. For this reason routing delays among the blue and

green primitives are still fast and predictable.

6 Examples

In this section we give a few example applications that

were developed with the help of the algorithm. We don’t

claim that these were discovered purely by applying the

algorithm in one shot. Some human insight and trial and

error was required. But the algorithm was indispensable

to prove that the applications can be mapped as shown.

6.1 Double Data Rate Symmetric FIR

Figure 5 shows how a symmetric 4N-tap FIR filter can be

implemented in N PolarFire
TM

 math blocks. The period is

two clock cycles, with one sample per period at both the

input and output.

The logic includes an input, output, adders, multipliers,

muxes (with dynamic selects), ROMs for the coefficients,

and registers (each with an enable signal). There are also

a routing mux and optional registers, shown with dotted

borders. Recall that we have fast and predictable routing

delays among the blue primitives (implemented in hard

circuitry) and green primitives (implemented using

directly-connected adjacent LUTs and flip-flops in the

fabric). In contrast, the primitives shown here in red are

implemented in the remainder of the fabric, and routing

delays among them are less predictable. So we add a

constraint that the red sequential elements can be enabled

(simultaneously) only on alternate clock cycles. This

allows the math block to be clocked at twice the rate that

can be supported by general fabric routing.

Determining manually whether and how all the control

signals and coefficient addresses can be set properly

would be difficult, especially considering the various

possible remainders when the number of taps is divided

by four, and cases of odd and even symmetry. No user, or

even IP developer, would relish working through this.

Figure 6 shows the schedule of control signals and

execution trace reported by the algorithm for the case of

11 taps. Observe that the B2 and R registers are enabled

in synchrony and only on alternate clock cycles, as

required for double data rate operation.

6.2 Winograd FIR Filter

Consider two successive outputs from a 2-tap FIR filter,

normally computed using four multiplication operations:

𝑌0 = 𝐶0𝑋0 + 𝐶1𝑋1

𝑌1 = 𝐶0𝑋1 + 𝐶1𝑋2

As Winograd observed in [6], these can be rewritten as

follows using only three multiplications:

𝐷 = 𝐶0(𝑋0 − 𝑋1)
𝐸 = 𝑋1(𝐶0 + 𝐶1)
𝐹 = −𝐶1(𝑋1 − 𝑋2)

𝑌0 = 𝐷 + 𝐸

𝑌1 = 𝐸 + 𝐹

Using our algorithm, we have found an efficient way to

leverage this trick to implement a general T-tap FIR filter

in N = (3/4)T math blocks, shown in Figure 7. The period

is 2 clock cycles, but a sample is produced every clock

cycle. The implementation requires a fixed delay of 1 or 4

clock cyles depending on the remainder T mod 4. This is

represented by the indicated delay line. The solution uses

the 3
rd

 addend input C provided by the PolarFire
TM

 math

block to reduce the total latency. The schedule of control

signals and trace is shown in Figure 8.

6.3 Folded Symmetric FIR with Few RAMs

Many forms of folded FIRs are known in the literature.

Here we show that the algorithm can generate a

particularly intricate one that can support folding while

still benefiting from symmetrical coefficients, and without

requiring a separate RAM block for each multiplier. It

relies for its proper operation on the folding factor F and

number of multipliers N being relatively prime (i.e.,

having no common factors other than one). The structure

requires one RAM for the forward ASR and min{F,N}

RAMs for the reverse ASRs. The filter is depicted in

Figure 9 and the schedule and trace in Figure 10.

7 Limitations and Future Work

As mentioned above, our initial implementation used a

SAT solver, and for convenience we limited the values of

the variables K to -1, 0 or 1. To handle more complex

Winograd filter schemes, we would need to support other

values of K. A larger but still finite selection of values

could be supported with SAT by using more Boolean

variables to encode the value. Using ILP or SAT modulo

theory (SMT) solvers would support all real values.

This work assumed that any combinational path through

the target architecture would have a sufficiently small

delay so as not to exceed the target clock frequency

(which is reasonable for FPGA math blocks). Additional

5

constraints on the mux select variables could be added to

ensure this, as is done in modulo scheduling.

Any time SAT or ILP solvers are used, run time may be

an issue. Typical FPGA DSP structures are organized as a

chain of identical units. We have found that the addition

of a few corresponding symmetry constraints on control

variables can significantly reduce run time. It may also be

possible to further leverage the symmetry by considering

only the first unit, last unit, and a representative unit in

the middle of the chain to reduce the problem size. The

approach of [3], combining SAT with a linear constraint

solver to achieve scalability, might also be investigated.

Despite these limitations, we have already found the

current implementation to be very helpful in our own

work generating IP for existing math blocks and

evaluating architectures for new ones.

8 References

[1] Microsemi: PolarFire FPGA Product Overview

(PO0137), www.microsemi.com, 2018.

[2] Oppermann, J., Koch, A., Reuter-Oppermann, M.,

Sinnen, O.: ILP-based Modulo Scheduling for High-

level Synthesis. CASES ‘16, 2016.

[3] Dai, S. Liu, G., Zhang, Z.: A Scalable Approach to

exact Resource-Constrained Scheduling based on a

Joint SDC and SAT Formulation. Int’l Symp. On

Field-Programmable Gate Arrays, 2018.

[4] Canis, A., Brown, S., Anderson, J.: Modulo SDC

Scheduling with Recurrence Minimization in High-

Level Synthesis. Int’l Conf. On Field Programmable

Logic, 2014.

[5] Denk, T., Parhi, K.: Synthesis of Folded Pipelined

Architectures for Multirate DSP Algorithms. IEEE

Trans. VLSI Systems, Dec. 1998.

[6] Winograd, S.: Arithmetic Complexity of

Computations. Soc. Indus. & Applied Math., 1980.

[7] Gao, X., Baylis, S., Constantinides, G.: SOAP:

Structural Optimization of Arithmetic Expressions

for High-Level Synthesis. Int’l Conf. Field-

Programmable Tech., 2013.

[8] Fan, K., Park, H., Kudlur, M., Mahlke, S.: Modulo

scheduling for highly customized datapaths to

increase hardware reusability. Proc. IEEE/ACM

Intl’l Symp. On Code Generation and Optimization.,

2008.

[9] Chin, S., Anderson, J.: An Architecture-Agnostic

Integer Linear Programming Approach to CGRA

Mapping. Design Automation Conf., 2018.

[10] Gebser, M., Janhunen, T., Rintanen, J.: Declarative

encodings of acyclicity properties. Journal of Logic

and Computation, 2015.

[11] Microsemi: Efficient INT8 Dot Product using

Microsemi Math Block (WP0216),

www.microsemi.com, 2018

6

zero

input

+

ROM

x

+

B1

B2B3

R

DA

P

+

ROM

x

+

B1

B2B3

DA

P

…

output

Block 0

+

ROM

x

+

B1

B2B3

R

DA

P

Block N-2 Block N-1

zero

R R R

…

Figure 5: Structure of double data rate FIR.

Node Variable phase=0 phase=1

A[0-2] enable 1 1

B1[0-2] enable 1 1

B2[0-1] enable 0 1

B2[2] enable 0 0

B3[0-2] enable 1 0

Bmux[0] select B3[0] Input

Bmux[1] select B3[1] B2[0]

Bmux[2] select B3[2] B2[1]

D[0-2] enable 1 1

Dmux select Zero Rmux

Input valid 0 1

P[0-2] enable 1 1

Pmux[0] select Zero P[0]

Pmux[1] select P[0] P[1]

Pmux[2] select P[1] P[2]

R[0-4] enable 0 1

Rmux route R[3] R[3]

Rom[0] coeff C1 C0

Rom[1] coeff C3 C2

Rom[2] coeff C5 C4

Time Phase Input B1[0] D[0] P[0] B1[1] D[1] P[1] B1[2] D[2] P[2]

1 1 X0 0

2 0 X0

3 1 X1 0

4 0 X1

5 1 X2 X0 0

6 0 X2

7 1 X3 X1 0

8 0 X3 X0

9 1 X4 X2 0

10 0 X4 X1

11 1 X5 X3 X0 0

12 0 X5 X2

13 1 X6 X4 X1 0

14 0 X6 X3 X0

15 1 X7 X5 X2 0

16 0 X7 X4 X1

17 1 X8 X6 X3 X0 0

18 0 X8 X5 X2 X0

19 1 X9 X7 X4 X0 X1 0

20 0 X9 X6 X0 X3

21 1 X10 X8 X0 X5 X1 X2 0

22 0 X10 X0 X7 X4

23 1 X9 X1 C0X0+C0X10 X6 X3 0

24 0 X1

C0X0+C1X1

+C1X9+C0X10 X8 X2 X5

25 1 X7 X3

C0X0+C1X1+C2X2

+C2X8+C1X9+C0X10 X4 0

26 0 X9 X3

C0X0+C1X1+C2X2

+C3X3+C3X7+C2X8

+C1X9+C0X10 X6 X4

27 1 X5 0

C0X0+C1X1+C2X2+C3X3

+C4X4+C4X6+C3X7+C2X8

+C1X9+C0X10

28 0

C0X0+C1X1+C2X2+C3X3

+C4X4+C5X5+C4X6+C3X7

+C2X8+C1X9+C0X10

 Figure 6: Schedule and trace for double data rate 11-tap symmetric FIR in 3 math blocks.

7

B3

zero

ROM

x

+

B1A

P

� blocks

B2

input +

B3

ROM

x

+

B1A

P

B2

C

output

ROM

x

+

B1A

P

S

ROM

x

+

B1A

P

� blocks

……

delay

zero

-

Figure 7: Structure of Winograd FIR filter.

Node Variable phase=0 phase=1

A[0-5] enable 1 1

B1[0] enable 0 1

B1[1] enable 0 1

B1[2] enable 1 1

B1[3] enable 1 1

B1[4] enable 1 1

B1[5] enable 1 1

B2[0] enable 0 1

B2[2] enable 1 1

B2[3] enable 1 1

B2[4] enable 1 1

B3[0] enable 0 1

B3[2] enable 1 1

B3[3] enable 1 1

B3[4] enable 1 1

C enable 0 1

Delay enable 1 1

Delay addr 0 0

Input valid 1 0

P[0-5] enable 1 1

Pmux[0] select P[0] Zero

Pmux[1] select P[1] P[0]

Rom[0] coeff C4+C5 C6+C7

Rom[1] coeff C0+C1 C2+C3

Rom[2] coeff C6 -C7

Rom[3] coeff -C5 C4

Rom[4] coeff C2 -C3

Rom[5] coeff -C1 C0

S enable 1 1

Time Phase Input B1[0] P[0] B1[1] P[1] C B1[2] P[2] B1[3] P[3] B1[4] P[4] B1[5] P[5]

0 0 X0

1 1 X1

2 0 X2 X1

3 1 X3 X1 X0-X1

4 0 X4 X3 X1-X2

5 1 X5 X3 X2-X3

6 0 X6 X5 X3-X4 X0-X1

7 1 X7 X5 X4-X5 X1-X2

8 0 X8 X7 C4X5+C5X5 X1 X5-X6 X2-X3

9 1

C4X5+C5X5

+C6X7+C7X7 X1 X6-X7 X3-X4 X0-X1

10 0 X3

C0X1+C1X1

+C4X5+C5X5

+C6X7+C7X7 X7-X8

C6X6 -

C6X7 X4-X5 X1-X2

11 1 X3

C0X1+C1X1

+C2X3+C3X3

+C4X5+C5X5

+C6X7+C7X7

-C7X7

+C7X8 X5-X6

C4X4-C4X5

+C6X6-C6X7 X2-X3

12 0

C0X1+C1X1

+C2X3+C3X3

+C4X5+C5X5

+C6X7+C7X7

-C5X5+C5X6

-C7X7+C7X8 X3-X4

C2X2-C2X3

+C4X4-C4X5

+C6X6-C6X7 X0-X1

13 1

C0X1+C1X1

+C2X3+C3X3

+C4X5+C5X5

+C6X7+C7X7

-C3X3+C3X4

-C5X5+C5X6

-C7X7+C7X8 X1-X2

C0X0+C1X1

+C2X2+C3X3

+C4X4+C5X5

+C6X6+C7X7

14 0

C0X1+C1X2

+C2X3+C3X4

+C4X5+C5X6

+C6X7+C7X8

 Figure 8: Schedule and trace for 8-tap general (asymmetric) Winograd FIR filter in 6 math blocks.

8

zero

input

+

ROM

x

+

B1

B2

DA

P

+

ROM

x

+

B1

B2

DA

P

+

ROM

x

+

B1 DA

P

output

Block 0 Block F-1 Block N-1

RevASR[0]FwdASR

…

+

ROM

x

+

B1

B2

DA

P

Block i

from
RevASR[i%F]

……

from
RevASR[(N-1)%F]

zeroRevASR[F-1]

Figure 9: Structure of symmetric folded FIR with fewer RAMs than math blocks.

Node Variable phase=0 phase=1

A[0-2] enable 1 1

B1[0-2] enable 1 1

B2[0-1] enable 1 1

D[0-2] enable 1 1

Dmux select RevASR[0] RevASR[0]

FwdASR enable 1 0

FwdASR addr 3 0

Input valid 1 0

P[0-2] enable 1 1

Pmux select Zero P[2]

RevASR[0] enable 1 0

RevASR[0] addr 8 9

RevASR[1] enable 1 0

RevASR[1] addr 5 12

Rom[0] coeff C3 C1

Rom[1] coeff C5 C0

Rom[2] coeff C4 C2

Time Phase Input B1[0] D[0] P[0] B1[1] D[1] P[1] B1[2] D[2] P[2]

6 0 X0

7 1

8 0 X1

9 1

10 0 X2 X1

11 1

12 0 X3 X2 X1

13 1

14 0 X4

15 1 X0

16 0 X5

17 1 X1 X0

18 0 X6 X5

19 1 X2 X1 X0

20 0 X7 X6 X5

21 1 X3 X2 X1

22 0 X8 X7 X6

23 1 X4 X3 X2

24 0 X9 X7

25 1 X5 X0 X4 X3 X3 X0

26 0 X10 X9 X7 X0

27 1 X6 X5 X4

28 0 X11 X10 X1 X9

29 1 X7 X2 C1X1+C1X10 X6 X5 X5 X2

30 0 X11 X2 X10

C1X1+C5X5

+C5X6+C1X10 X9 X2

31 1 X8 X3 X7 X6

C1X1+C2X2+C5X5

+C5X6+C2X9+C1X10

32 0

C1X1+C2X2+C3X3

+C5X5+C5X6+C3X8

+C2X9+C1X10 X11 X0 X10 X3

33 1

C0X0+C1X1

+C2X2+C3X3

+C5X5+C5X6 X7 X4

34 0

C0X0+C1X1+C2X2

+C3X3+C4X4+C5X5

+C5X6+C4X7+C3X8

+C2X9+C1X10+C0X11

 Figure 10: Schedule and trace for 12-tap symmetric FIR folded by 2, in 3 math blocks and 3 RAMs.

