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Abstract

Novel problems concerning the design and routing for the segmented routing
channel, are introduced. These problems are fundamental to the design
and design automation for Field Programmable Gate Arrays (FPGAs), a
new type of electrically programmable VLSI. The problems introduced may
also be applicable to configurable multi-processors. The paper demonstrates
using a probabilistic model for connections that a segmented channel with
judiciously chosen segment lengths can be nearly as efficient (in terms of
the number of tracks required) as a freely customized routing channel. This
is corroborated by experimental data from actual designs. The paper also
presents the first known theoretical results on the combinatorial complexity
and algorithm design for segmented channel routing. In particular it is shown
that the segmented channel routing problem is in general NP-Complete, and
that efficient polynomial time algorithms can be designed for a number of
important sp'ecial cases.

1 Introduction

Conventional channel routing [1] concerns the assignment of a set of connec-
tions to tracks within a rectangular region. The tracks are freely customized
by the appropriate mask layers. Even though the channel routing problem



is in general NP-Complete [4], efficient heuristic algorithms exist. In a chan-
neled gate array, which is customized by metal masks, the routing channels
are of fixed width and routing must be completed within the allotted number
of tracks. The channel width is selected such that routing can be successfully
completed for most connection instances likely to occur in practice. Using
probabilistic models for connections (e.g., [11]) the channel width is chosen
so that successful routing is achieved with high probability.

In this paper we consider the more restricted channel routing problem
where the routing is constrained to use fixed wiring segments of predeter-
mined lengths and positions within the routing channel. Such segmented
channels have been incorporated in Field Programmable Gate Arrays (FP-
GAs) [2, 3], a new type of electrically customized VLSI used to drastically
reduce the time and cost for prototyping/implementing application-specific
integrated circuits. We investigate the routing problem for segmented chan-
nels and show using a probabilistic model for connections that with judi-
ciously chosen segment lengths the channel width needed to achieve high
probability of routing completion is not much greater than that for a com-
parable size gate array. This result is further corroborated by experimental
data from actual designs. Thus leading us to believe that the integration
limit for FPGAs is nearly as high as that for mask programmed gate arrays,
a truly surprising finding. We also investigate the computational complexity
of and algorithms for the segmented routing problem for given segmented
channels. Our results show that although the problem is in general NP-
complete, several special cases admit polynomial time algorithms.

1.1 FPGA Architecture

The FPGA architecture of [3] is much like that of conventional (mask pro-
grammed) gate arrays: comprising rows of cells (logic modules) separated by
segmented routing channels (Fig. 1). The inputs and outputs of the modules
each connect to a dedicated vertical segment. Programmable switches are
located at each crossing of vertical and horizontal segments and also between
pairs of adjacent horizontal segments in the same track. By programming a
switch, a low resistance path is created between the two crossing or adjoining
segments.

Different logic circuits are implemented in an FPGA by assigning the
gates to logic modules (placement) and then connecting them via programmed
switches and segments (routing). A typical example of that is shown in Fig.
1. The vertical segment connected to the output of module 3 is connected
by a programmed switch to a horizontal segment, which in turn is connected
to the input of module 4 through another programmed switch. In order to
reach the inputs of modules 1 and 2, two adjacent horizontal segments are
connected to form a longer one.

The choice of the wiring segment lengths in a segmented channel is driven
by tradeoffs involving the number of tracks, the resistance of the switches,
and the capacitances of the segments. These tradeoffs are illustrated in Fig.
3.



Fig. 3A shows a set of connections to be routed. With the complete
freedom to configure the wiring afforded by mask programming, the left
edge algorithm [5] will always find a routing using a number of tracks equal
to the density of the connections (Fig. 3B). This is the case since there are
no ‘vertical constraints’ in the problems we consider.

In an FPGA, achieving this complete freedom would require switches
at every cross point. Furthermore, switches would be needed between each
two cross points along a wiring track so that the track could be subdivided
into segments of arbitrary length (Fig. 3C). Since all present technologies
offer switches with significant resistance and capacitance, this would cause
unacceptable delays through the routing. Another alternative would be to
provide a number of continuous tracks large enough to accommodate all nets
(Fig. 3D). Though the resistance is limited, the capacitance problem is only
compounded, and the area is excessive.

A segmented routing channel offers an intermediate approach. The tracks
are divided into segments of varying lengths (Fig. 3E), allowing each con-
nection to be routed using a single segment of the appropriate size. Greater
routing flexibility is obtained by allowing limited numbers of adjacent seg-
ments in the same track to be joined end-to-end by switches (Fig. 3F).
Enforcement of simple limits on the number of segments joined or their to-
tal length guarantees that the delay will not be unduly increased. Our results
apply to the models of Figs. 3E and 3F.

The segmented channel routing scheme may also be considered as a model
for a communication network in a multi-processor architecture. The logic
modules in Fig 1. can be replaced by Processing Elements (PEs); the seg-
mented routing network can then be used for dynamically reconfiguring in-
terconnections among the PEs (by programming the appropriate switches
as described for the FPGAs). In [8] a preliminary network model that uses
specially segmented channels (referred to as express channels) has already
been proposed. Tradeoffs similar to those discussed above also appear to
hold for such multi-processor communication networks.

1.2 Definitions and Summary of Results

A segmented channel routing problem, as depicted in Fig. 2, comprises a
set C, of M connections and a set 7, of T' tracks. The tracks are numbered
from 1 to T. Each track extends from column 1 to column N, and is divided
into a set of contiguous segments separated by switches. The switches are
placed between two consecutive columns.

For each segment s, we define left(s) and right(s) to be the leftmost and
rightmost column in which the segment is present, 1 < left(s) < right(s)
< N. Each connection ¢;, 1 < ¢ < M, is characterized by its left-most and
right-most column: left(c;) and right(c;). Without loss of generality, we
assume throughout that the connections have been sorted so that le ft(c;) <
left(c;) for i < j. :

A connection ¢ may be assigned to a track ¢, in which case the segments
in track ¢ that are present in the columns spanned by the connection are



considered occupied. More precisely, a segment s in track ¢ is occupied by
the connection ¢ if right(s) > left(c) and left(s) < right(c). In Fig. 2
for example, connection ¢z would occupy segments sp; and sg2 in track 2 or
segment s3; in track 3.

Definition 1 A routing, R, of a set of connections consists of an assign-
ment of each connection to a track such that no segment is occupied by more
than one connection.

A K-segment routing is a routing that satisfies the additional requirement
that each connection occupies at most K segments.

We can now define the following routing problems:

Problem 1 [Unlimited Segment Routing] Given a set of connections
and a segmented channel, find a routing.

For technological reasons, mentioned above, it may be desirable to limit the
number of segments used for each connection.

Problem 2 [K-Segment Routing] Given a set of connections and a
segmented channel, find a K-segment routing.

It is often desirable to determine a routing that is optimal with respect to
some criterion. We may thus specify a weight w(c, t) for the assignment of
connection ¢ to track t, and define:

Problem 3 [Optimal Routing] Given a set of connections and a seg-

mented channel, find a routing which assigns each connection ¢; to a track
M

t; such that Z w(e;, t;) is minimized.

1=1

For example, a reasonable choice for w(¢,t) would be the sum of the lengths
of the segments occupied when connection c is assigned to track ¢. Note also
that with appropriate choice of w(e,t), Problem 3 subsumes Problem 2.

The problems defined above address the issue of routing connections us-
ing given segmented-channels. Next we address the issue of designing such
segmented channels. In a conventional routing channel the wiring segments
are designed for the given set of connections using the left edge algorithm
(when no vertical constraints are present). The number of tracks required
(i.e. channel width) equals the channel density, i.e. the maximum number
of connections present in any column. Therefore, the width of a gate array
channel must be at least the density for most connection instances likely to
occur in practice. The channel width can be estimated [11] using a proba-
bilistic model for the connection lengths and their positions in the channel
to model the likely connection instances. In the segmented routing channels
considered in this paper, the segment lengths as well as the channel width
must be chosen such that a routing can be found for most connection in-
stances likely to occur. We assume a probability distribution p(c) over the
set of all possible connections, C, and define the following:



Problem 4 [Segmentation Design Problem|:

Given: M, N, K, € > 0, and a probability distribution p(c) over the set of
all possible connections, CC, with 1 < left(c) < right(c) < N.

Find: a segmented channel with the minimum number of tracks 7" such that
with probability at least 1 —e€ there is a K'-segment routing for M connections
drawn randomly according to p(c). :

In this paper we establish the following results.

Theorem 1  Determining a solution to Problem 1 is strongly NP-complete.

Theorem 2 Determining a solution to Problem 2 is strongly NP-complete
even when K = 2.

The reductions used to prove these theorems are rather tricky, and may
have applications to problems in the area of task-scheduling on non-uniform
processors. A proof of Theorem 1 is presented in Section 2, and a proof of
Theorem 2 is given in [10]. :

Although Theorems 1 and 2 show that the routing problem is in general
NP-complete, several special cases of the problem are tractable. We have
developed polynomial-time algorithms for the following special cases:
Identically Segmented Tracks: The left edge algorithm used for con-
ventional channel routing can be applied to solve Problems 1, 2, and 3.
1-Segment Routing: A routing can be determined by a linear time
(O(MT)) greedy algorithm that exploits the geometry of the problem.

The connections are assigned in order of increasing left ends as follows.
For each connection, find the set of tracks in which the connection would
occupy one segment. Eliminate any tracks where this segment is already
occupied. From among the remaining tracks, choose one where the occupied
segment’s right end is farthest to the left, and assign the connection to it.
In the example of Fig. 2, the algorithm assigns ¢; to sj;, ¢z to sg1, 3 to
831, €4 tO 832, and c5 to s;3. It can be shown that if a connection cannot
be assigned to any track, then no complete routing is possible. The time
required is O(MT).

The corresponding optimization problem (Problem 3) can be also solved
in polynomial time by reducing it to a weighted maximum bipartite matching
problem.

At most 2-Segments Per Track: If each track is segmented into at
most two segments then also a greedy linear time algorithm (similar to the
one for 1-Segment routing) can be designed to determine a routing.

We have also developed a general O(T'! M )-time algorithm using dynamic
programming for solving Problems 1, 2, and 3. This general algorithm can
be adapted to yield more efficient algorithms for the following cases:

Fixed Number of Tracks: If the number of tracks is fixed then the
general algorithm directly yields a polynomial time algorithm. ‘
K-segment Routing: The general algorithm can be modified to yield an
O((K 4+1)T M)-time algorithm. Note that for small values of K the modified
algorithm performs better than the general one.



Fixed types of Tracks: If the number of tracks is unbounded but the

tracks are chosen from a fixed set, where T} is the number of tracks of type
l

i, then an O((H THK+2)M) time (hence, a polynomial-time) algorithm can
1
be designed.

Furthermore, we have developed a heuristic algorithm based on linear pro-
gramming for solving Problems 1 and 2 that appears to work surprisingly
well in practice.

The general algorithm and the above mentioned special cases are de-
scribed in [9, 10].

Assume that the connection lengths are selected independently from an
exponential distribution and the left end points of the connections are cho-
sen uniformly from N columns; for an exact description of the probability
distribution, p(c), see Section 3. Anyway, in Section 3, using the above men-
tioned p(c) we prove the following result which shows that asymptotically
the width of a segmented routing channel is within a small constant factor
of that for a conventional gate array:

Theorem: 8 Forany N, M, 0 < p < l,80<ca<landp > 1,2
segmented channel can be designed such that with probability O(N ~*) there
is no 1-segment routing of M connections chosen independently. The number
of tracks in the channel is [C(1 + a)3] N*M/N, where C = 2.5.

The proof of Theorem 3 (see Section 3) is constructive, and may be gen-
eralized to a large class of distributions. Such results give theoretical justi-
fication for the favorable experimental results concerning 1- and 2-segment
routing discussed in Section 4.

2 Complexity of the Segmented Routing Prob-
lem

In this section we prove Theorem 1, i.e. determining a solution to Problem 1
is strongly NP-complete. The proof of Theorem 2, i.e. determining a solution
to Problem 2 is strongly NP-complete even when K = 2, is presented in the
Appendix. The NP-Complete reductions for both the theorems is from the
Numerical Matching Problem with Target Sums, which has been shown to
be strongly NP-Complete [7].

Numerical Matching with Target Sums [7]:  Given a set § =
{1,---,n}, and positive integers z1,---,Zn, Y1,y Yn, 21, °*,2n With
Z(z; +¥)= ZZ;, do there exist permutations a and S of S such that
1€S €S
To(i) + Yp(i) = i, for all i € §7?

We assume without loss of generality that z; < z2 < -+- < Zp, Y1 <
Yo < -+ < Yp,and 2q < 29 < -+ < 2. Furthermore, we assume that for any
instance of the problem, we have z;,,; —z; > nand z;+y; > z,+n. If these
conditions are not met for an instance of the problem then one can define
an equivalent problem (i.e. the modified problem has a solution if and only



if the original problem has a solution) for which the conditions are met by
performing the following transformations:
1. Scaling: Define m = [n/min(z; — z;_1)]. If m > 1 then set z; — mz;,
Y; — my;, and z; — mz;.
2. Translation: Define p=2z,+n—(y; +z1). If p > 0 then set y; — y; + p,
and z; « 2; + p. e

Given an instance of the Numerical matching problem A, we now show
how to construct an instance of the segmented routing problem Q in poly-
nomial time.
The set of connections C is defined as follows:
1. For each z; we define a connection a; such that left(a;)= 4, right(a;)=
z; + 3. Thus, each connection a; is of length z; — 1, and starts at column
number 4. :
2. For each yi, we define n connections by, - - -, bxn (one for each z;) such
that left(bg;)= z; + 4 + (n — k) and right(bg;)= (yx + z;) + 4.
3. n connections dy,---,d, are defined with left(d;)= 1, and right(d;)=3.
4. n? — n connections e, ---,e,2_, are defined with left(e;) = 1, and
right(e;) = 5.
5. n? connections fi,---, f,2 are defined with left(f;)= z, + y» + 5 and
right(fi)=zn + yn + 7.

Set the number of columns in the construction to N =z, + ¥, + 7.
The set 7 of n? tracks are then defined as follows:
1% For the first n tracks ty,---,t, each track t; begins with a segment
(1,3) followed by unit length segments that span the region from column
4 to column z; + 4 (i.e. there is a switch between every two columns be-
tween column 4 and column z; +4), followed by a single segment of the form
(Zi + 5, N)
2. The rest of the n? — n tracks are best described by dividing them into
n blocks, each consisting of n — 1 tracks. Each such track comprises 3 seg-
ments.

The first block of n — 1 tracks, i.e. tracks t,41,tnt+2,,%2n—1, are con-
structed using the definitions of the connections b;;, 1 < 7 < n. The
segments in the track t,4; are (1, left(by1) — 1), (left(b11), right(by2)),
and (right(b12) + 1, N). That is, the middle segment in the track #,4;
is defined such that the connections b;; or by2 can be assigned to it. In
general, the segments in each track t,4;, 1 < j < n — 1, are defined as
(1, left(by;) — 1), (left(by;), right(by(j4+1))), and (right(by(;41)) +1, N). That
is, the middle segment in the track t,4+;, 1 < ¢ < n—1,is designed such
that the connections by; or by(;41) can be assigned to it.

The i** block of n — 1 tracks (i.e. tracks tny(i—1)(n-1)+1>"" "> tnti(n—1)) 18
constructed using the definitions of the connections b;;, 1 < j < n. The
segments in the track t(n4(n_1)(i-1))+; (i-e. the jth track in the ** block) are
(1, left(bij) = 1), (left(b,']‘), right(b,-(j+1))), and (rlght(b,(1+1)) + 1, N) That
is the middle segment in the track ¢(,4(n—1)(i-1))+; is designed such that the
connections b;; or b;(;;1) can be assigned to it.

The following example illustrates this construction.



Example 1: Consider the segmented channel routing problem (see Fig.

4) corresponding to the instance of the Numerical matching problem with

Target Sums:

o1 =2, 0, =503 =8, Wi=9 7o=11 ys =12 and

ey =l 2 =l g = i
We might note here that our proof of the NP-Complete reduction is geo-

metric in nature and it is helpful to use the above example in understanding

the statement and the proof of each of the following propositions and lem-

mas. Before we proceed, however, let us define the following:

Two connections ¢; and cg will be said to overlap if they are present in the
same column(s) i.e. left(cy) < left(cy) < right(cz) or left(c) < left(cy) <
Tight(Cg).

A connection ¢; is said to fit -in a segment Sy if left(e;) > left(Sy) and
right(c1) < right(Sh).

A segment is said to be available for a set of connections if it is unoccupied
by the rest of the connections in C.

Proposition 1  In any routing R of Q:

(a) the connections f;, 1 <1 < n?, are assigned to n? different tracks.

(b) the connections d;, 1 < ¢ < n, and a;, 1 < ¢ < n, are assigned to tracks
t1,---,t,, and connections e;, 1 < i < n? — n, are assigned to tracks t,4;
through ¢,2.

Proof: Claim (a) follows directly from the construction; i.e. , the connec-
tions f;, 1 < i < n? are all identical and overlapping.

Claim (b) follows from the following observations that are based on the above
construction:

1. Each connection e;, 1 < i < (n? — n), overlaps with every other e;. Each
e; also overlaps with every connection dj, 1 < j < n and every connection
ar, | < h<n

2. In tracks t; through t, a d; and a; can be assigned to the same track,
and such assignment is not possible for tracks ¢;, where : > n.

3. Finally, it follows from 1., 2. and (by the pigeon-hole principle) that 1f
any e; is assigned to a track t;, J < n, then there would not be a suffi-
cient number of tracks so as to assign all the connections d;, 1 < ¢ < n, aj,
1<j<n,andes,1<k<ni-n. O

Proposition 2  In any routing R of Q, the segments available for assign-
ing the connections a;, 1 < < n, and b;;, 1 < 7,7 < n are as follows:

(a) In any track ¢;, 1 < i < n, the segments in columns 4 through 2; +4 (i.e.
, the portion that is fully segmented) are available.

(b) In any track t;, n + 1 < ¢ < n?, only the middle segment is available.

Proof: Follows from Proposition 1: (a) In any track ¢t;, 1 < ¢ < n, the
first segment is always occupied by a d; (for some 1 < j < n), and the last
segment is occupied by an fi. Hence, the only available portion is the fully
segmented part of the track. (b) Every track t;, n +1 < i < n?, has only



three segments, and from Proposition 1 we know that the left segment is
occupied by a connection €; (for some 1 < j < n?) and the right segment by
another connection fx, 1 < k < n?. |

The following proposition shows that in any routing R of Q, every track
has exactly one b;; assigned to it.

Proposition 3  All connections b;;, 1 < 4,j < n, overlap; hence they have
to be assigned to different tracks.

Proof: Given the geometry of our construction, it suffices to show that b1,
and by, overlap. Now right(b11)= z1 + y1 +4, and left(byn)= 2, +y1 +n + 3.
Hence, right(by,)—left(b11) = 1 + y1 — (zn + n — 1) which is strictly greater
than 0 by our assumptions. a

We can now show one direction of the reduction procedure.

Lemma 1 If the given Numerical Matching problem with target sums
has a solution then there exists a routing for the segmented channel problem

Q. 5

Proof: Suppose there exist permutations o and 3 such that z,(;) + ys@) =
z; for all 1 < ¢ < n. Then we can define a routing as follows:

1. Connections d;, 1 <i<n,e;,1<i<n?-n,and f;,1 << n? are
assigned according to Proposition 1.

2. For every i, 1 < i < n, connections a,(;) and bg(;)a(i) are assigned to
track t;. Since z,(;) + Yp(;) = 2i, one can easily show that the connections
can be appropriately assigned in the available segments (also see Proposition
2

At this stage, for every ¢, 1 < i < n, all except one connection among the
connections b;j, 1 < j < n, need to be routed.

3.  Consider the connections by, 1 < j < n. Let by be the connection
that has been assigned to one of the tracks ¢;, 1 < ¢ < n. Recall that
the tracks tn41 through t,4(,_1) were designed using the definitions of by;,
1 < j < n, and that the middle segment in track ¢,4; can accommodate
either connection by; or connection by,. So assign by; to track t,41 and
repeat this procedure by assigning connections by through by(x_;) to tracks
tn+2 through ¢, (x_1). Now, by has already been assigned, hence one has to
assign connections by (x41) through b1,. By construction, however, by (41 can
be assigned to track t,+k, and this assignment procedure can be continued
by assigning by(42) to track t,4(k41), and so on.

In general for any ¢, the unassigned n—1 connections among b;;, 1 < j <
n can be assigned to the i block of tracks (i.e. tracks t,4(i—1)(n=1)+1>" "
tnti(n—1)) by following the same procedure as above.

Next we show that if the routing problem @ has a valid routing then
there is a solution for the numerical matching problem N. The following
definitions that capture the geometry of the routing problem, @, will be
helpful: :

It is clear from Propositions 1, 2, and 3 that each track ¢;, ¢ <! < n has one
connection from a;, 1 < ¢ < n and one connection from bg;, 1 < k,j < n



assigned to it. Also, note that since the parts of the first n tracks that are
available for the connections a;, 1 < 7 < n, and bg;, 1 < k,j < n are fully
segmented, two connections a; and by; can be assigned to the same track
only if they do not overlap.
We define the length or space occupied by the connections a; and by; assigned
to some track t; (1 < I < n) as equal to right(bk;)-left(a;). That is, the length
(or space) occupied by the two connections is the geometrical length from
the left end of the connection a; to the right end of the connection by;.
Note that it follows from Proposition 2 that the total length (or space)
available in the first n tracks for assigning the connections a;, 1 < < n and
n
FES ST AR Zz,-.
1
Proposition 4 Connections a; and bi; cannot be assigned to the same
trackif j <.

Proof: left(by;)= z;+4+(n—Fk), thus right(a;)—left(bx;)= z;—(z;+n—k).
However, by our assumptions z; — (z; + n — 1) > 0, for all j < . Hence, a;
and by; overlap for j < 1. a

Proposition 5 If a; and bg; (j > i) are assigned to the same track ¢
(1 <1< n), then the length occupied in the track t; is z; + yx (= =i + yx).

Proof: left(a;)= 4, and right(bx;)= z;+yx+4. Hence, right(bs;)—left(a;)=
z; + Y& > zi+ yx (because by our assumption j > ¢ implies that z; > z;).
&l

Proposition 8 None of the connections by; for k£ > 1 can be assigned to
tracks t,41 through ¢, (n_1).

Proof:  Recall that the tracks t,4, through ¢,,(,_;) were constructed
using the connections by;, 1 < j < n. Now consider any track ¢,4;. From
Proposition 1 we know that its end segments are already occupied. Hence,
for any bx; to be assigned to this track it must fit within the middle segment
(1eft(b11), I‘ight(bl(H_l))).

First consider the case where k¥ > 1 and j < I. Recall that left(bs;)=
z; + (n — k) + 4; since j < I, we have z; < z; and since k > 1, we can write
left(bk;)=z;+ (n—k)+4 < 21+ (n—1)+4 = left(by;). Hence, bi; cannot
be assigned to track t,4.

Next consider the case where k¥ > 1 and j > I. Recall that right(bs;)=
Tj + Yk + 4; since j > (14 1), we have z; > z41; furthermore, k£ > 1 implies
that yx > y;. Hence, right(bgj)= zj+yx+4 > 141 +y1 +4 = right(by(i41))-
Therefore, by; cannot be assigned to track t,4.. a

Proposition 7 In general, none of the connections by; for k > ¢ can be
assigned to tracks t,4(n—1)(i-1)+1 through t,4(n_1):.

Proof: Recall that these tracks were constructed using the definitions of
bij, 1 < j < n. The proof then follows along the lines of the previous propo-
sition. a



Let R be any routing of Q, then we define m; as follows:
m; = |{b;j: 1< j<n, and b;;is assigned tot;, 1 <! < n, in R}|.

In other words, m; is the number of connections from the set {b;1,b;,,- - -, bin}
that are assigned to the first n tracks (i.e. , t;,t2,--,t,). The following
Propositions 8, 9, and 10 show that in any valid routing R of Q@ m; =1 for
alll <1< n

k n
Proposition 8 Zm; <k V1l<k<nand sz —
1 1

Proof:  Fach track has exactly one connection b;; (for some ¢ and j)
assigned to it. Hence, by definition )T m; = n.

To show that Z’f m; < k for every 1 < k < n, first consider £ = 1.
Suppose that m; > 1, then exactly n —m; connections from among the con-
nections by;, 1 < j < n are assigned to tracks t,4; through ¢,.. Even if all of
them were assigned to tracks in the first block (i.e. , among t,41,-+, then—1),
there would be (m; — 1) > 1 tracks in the block that are left unassigned.
However, by Proposition 6, no connection b;;, when ¢ > 1, can be assigned

to any track among tp4+1,-**,tntn—1. Lhus, at least (m; — 1) tracks among
tntl,* " *stntn—1 have no connection b;; assigned to it. This leads to a con-
tradiction.

Using Proposition 7, the same arguments can be applied for any & > 1.
That is for £ = 2, one can show (using Proposition 7) that if m; + mg > 2,
then some tracks among t,4; through t,,9,—1) do not have any connection
b;; assigned to them. o

Proposition 9 Let w; < wp < - -+ < wy,, be a sequence of positive integers
and let non-negative integers m;, 1 < ¢ < n, satisfy the following relations:
Z’fmi CEVIi<hk<n,and ) Tm=n Then ) Pmw > ) 7w il and
only if some of the m; are 0.

Proof: First we observe that if there exists an m; > 1, then there exists
| = mj—1 distinct variables mj,, - - -, m;,, such that all of them are 0 and j; <
j. If not, then one can easily show that Z{ m; > j, which is a contradiction.
Thus, if any of the variables m; > 1, then it always forces some m to equal
0 such that £ < ¢. Hence, Y_F m;w; > 5 T w; if and only if some of the m;
are 0. O

Proposition 10 In any routing R, m; = 1V 1 <1 < n, i.e , in every
routing only one connection from the set {b;1,---,b;n} is assigned to one of
the first n tracks.

Proof: If a; and by; are assigned to the same track then from Proposition
5 we know that the length occupied is > z; + yx. Now by definition, mj con-
nections from among bx;, 1 < j < n, appear in the first n tracks. Hence, the



total length occupied by the connections a;, 1 <7 < n, and the connections
bij, 1 < 1,j < nthat are assigned in the first n tracksis > 37 z; + 37 mxyx.

If at least one my is 0, then Proposition 9 implies Y 7 mryx > Y_7 yx (be-
cause y; < Yz < ---Yn). Hence, the total length occupied by the connections
a; and b;; in the first n tracksis > 3"7 z; + 3T yx = > 7 2. This leads to a
contradiction because Proposition 2 shows that the total space available is
equal to Y T 2;. Hence, m; =1V1<i<n. O

Lemma 2 If there is a routing for the segmented channel problem Q,
then there exists a solution to A.

Proof: Proposition 10 shows that for all ¢, 1 < ¢ < n, only one connection
among {b;1,- -, bin} is assigned to one of the first n tracks. By Proposition 5,
if a; and by; (j > i) are assigned to the same track then the length occupied
is z; + yx (= =i + yx). Hence, the total length occupied by the connections
is > YT o+ YTk = XF %
Claim 1. A connection a; can only be assigned to the same track with
some by;. =
Proposition 4 shows that if a; and bg; are assigned to the same track then
j > 1. Now if a; is matched with some by; and j > 7, then the length occupied
is ; + Yk > =i + yx. Hence, the total length occupied by all the connections
in the first n tracks is greater than Y7 z; + > T yx = 3.7 zi. However, this
leads to a contradiction since the total space available in the first n tracks
is 3T z; (Proposition 2). Hence, a; can only be assigned to the same track
as some by;.

It follows then that if we define the connections assigned to track ¢;,
1 <@ < n, as aq(;) and bg(i)a(i), then a and [ are permutations of the set
{1,---,n}. Also by our convention, the total length occupied in track ¢; by
(i) and bg(iya(i) 18 = Ta(i) + Yp(i)-
Claim 2. To(i) + Yp(i) = Zi-
Suppose this is not the case for some 7, 1 < ¢ < n. Then it implies that
in the track t;, the length occupied by the connections a,(;) and bg(;)a(i) is
< z;. Now by Proposition 2, in any track tx (1 < 7 < n) the space available
for assigning the connections a; and b;; is 2x. Hence, the length occupied by
the connections a; and the connections b;; in the first n tracks is < ) 2;.
However, this leads to a contradiction because we showed that the length
occupied is > 37 2.

Thus, the assignment of connections to the first n tracks defines permu-

tations o and 3 such that V ¢, z,(;) + yps) = - a
Theorem 1 Determining a solution to Problem 1 is strongly NP-complete.
Proof: Follows from Lemmas 1 and 2. a

3 On the Segmentation Design Problem

Suppose that M connections are chosen randomly from a distribution with
average length N for some p, 0 < p < 1. The expectation of the total length
of the connections is M N”. Thus successful routing, even in the case of an
unconstrained channel, is likely to require at least M N?/N tracks.



In this section, we show how to construct a segmented channel for arbi-
trarily large N and M such that with probability approaching one there is
a 1-segment routing of the M randomly chosen connections. The number of
tracks in the channel exceeds M N?/N by only a small constant factor.

To keep the mathematics simple, we assume that the channel is circular;
i.e., column 1 and column N are made adjacent. (Our results may easily
be extended to a normal straight channel). We further assume that the
connection lengths are selected independently with geometrically distributed
lengths and left end points uniformly chosen from among the N columns.
More precisely the M connections are chosen independently according to

the distribution
1 lright(c)=left(c)]y

p(C) = N I_TN

wherey= NP, andy=1-17.

The strategy for constructing the channel is to divide the possible con-
nection lengths [ into a number of ranges L; < | < U; for various lower
and upper bounds L; and U;. We then provide a dedicated set of tracks
for connections with lengths in each range. Define the ranges of connection
length as follows. Range j = 0 is defined by Lo = 0 and Up = N”. Range
j > 0 is defined by U; = exp(j)N” and L; = Uj/e. Since the lengths can be
at most N, we need only consider ranges where L; < N. Thus we limit j to
0 £ j £ Jmaz, Where jpmar = I—(l = P) IOgN-‘

Fig. 5 shows the tracks set aside for connections whose length [ is in
the range L; < | < Uj. The columns are divided into N/(aU;) groups of
aU; columns, for some constant 0 < a < 1. Each track is divided into
segments of length (1 + a)U;, and sets of m; identically segmented tracks
are placed in a staggered manner according to the column groups as shown.
(The precise values of m; and « are discussed below). The number of tracks
is mj(1 + a)/a. It is apparent that if at most m; of the connections in
this length range have their left end in any particular column group, then a
1-segment routing of these connections exists.

Theorem 3 Forany N, M,0< p< 1,0 < a < 1, and g > 1, the
probability is O(N ~?) that there is no 1-segment routing of M connections
chosen independently according to p(c) in the above described channel. The
number of tracks in the channel is [C(1+ a)8] N*M/N, where C =~ 2.5.
Proof: For each range j, 0 < j < jmqr and its corresponding bounds L;
and Uj, let us choose the parameter

log N
-1_-1+logp
Next let us define g; as the probability that a randomly chosen connection
has its left end in a particular group of aU; columns and has length / in the
range L; < | < Uj. Then

g; = (aU; /N7 11 -7 U=t3) [ (1-7 V) < (aU;/N)exp(-L;/N?).

Let the random variable X; be the number of connections, out of all M
chosen connections, that meet these requirements. Note that X; is the sum

m; = maz{ , BM(aU;/N) exp(~L;/N")}.



of M independent Bernoulli random variables with parameter g. The prob-
ability that X; > m; may be bounded as follows, using the Chernoff bound
(12]:

Pr(X; > m;) < exp(—sm;)(q;exp(s) + (1 - ¢;))"

for any s > 0. Choosing s so that exp(s) = m(1 — ¢;)/q;(M — m), we have:
(¢M/mj)™ (1= g;)/(1 = m;/M))M=
(g;M/m;)™ exp(m; — q; M)

ezp(—mj(log(z;) — 1 + 1/z;))

where z; = m;/(g;M). Note that the quantity (log(z;) —141/z;) is positive

for z; > 1 and increases monotonically with z;. Since our choice of m;
guarantees that z; = m;/q;M > 3 > 1, we have:

P’I‘()(]' S mj)

IEIA A

Pr(X; > mj) < exp(—m;(log(B) — 1+ 1/8)).

Since our choice of m; also guarantees that m; > log(N)/(log(8) —1+1/8),
we conclude that
Pr{X; > m;) < LN,

Thus the probability of running out of segments in one group of al/; columns
for connections with length [, L; < | < Uj, is at most 1/N. The probability
of running out of tracks for connections with length I/, L; < | < Uj, in
any of the N/(aUj;) column groups is at most (1/N)(N/(aU;)) = 1/(aUj).
Summing this for all ranges 0 < j < jmqz, We find that the probability of
not being able to successfully route the M connections is at most

jma:z jmﬂl‘
S == (N7/a) Y e < N (ef(e~1))/a
J=0 J =0

It remains to calculate the total number of tracks required by the scheme.
Recall that there are m;(1 + a)/a tracks set aside for each length range.
The number of tracks for range 7 = 0 is at most:

(1+a)BMN*1 +0O(log N)
The number of tracks for each range j > 0 is at most:
(1+ a)BMN*exp(j — e2~1) + O(log N)

The O(log N) term accounts for the possibility that the first term in the
definition of m may be the maximum. Summing over j, 0 < 7 < Jmar We
have:

(14 a)BMN?~1(1+ 3’3" exp(j — €71)) + jimazO(log V)
< (14 a)BMN*~ (14 52, exp(j — e71)) + O(log? N)

The series evaluates to approximately 1.5. i



If the connections are chosen according to p(c) defined above then the ex-
pected density (which is the number of tracks required in conventional chan-
nel routing) is easily shown to be a constant factor greater than N°M/N;
hence, the constant factor penalty incurred in segmented routing could be
much less than 2.5.

The method of constructing the segmentation is quite general, and the
result may be extended to other distributions. It may also be possible to
further reduce the constant C' in Theorem 3 below 2.5. Moreover, by using
the greedy algorithm for 1-segment routing (Section 3.1), routing can be
done in the above designed channels in linear time.

4 Concluding Remarks

We have introduced novel problems concerning the design and routing for
segmented channels. We also presented the first known theoretical results on
the efficiency, algorithm-design, and combinatorial-complexity of segmented
channel routing. In particular, we showed that: 1. The segmented channel
routing problem is in general NP-Complete, 2. efficient polynomial time al-
gorithms can be designed for several special cases, and 3. segmented channels
with judiciously chosen segment lengths near the efficiency of conventional
channels.

The theoretical results on the efficiency of segmented channels is also
corroborated by experimental data involving actual designs as presented in
Fig. 6. Channel segmentations were designed by a combination of trial-
and-error and human judgement. Two segmentations, each with 32 tracks
and 40 columns, were created. ‘Segmentation 1’ and ‘Segmentation 2’ are
intended for 1- and 2-segment routing, respectively. They were each tuned
to achieve the greatest likelihood of complete routing of randomly chosen
sets of connections under the corresponding segment limitation. The distri-
bution of connections was derived from actual placements of 510 channels
from 34 designs, and gives the probability of occurrence as a function of
the length and starting point of the connection. The segmentation designed
for 1-segment routing does fairly well, and the segmentation designed for 2-
segment routing uses only a few more tracks than the density (which is the
minimum number of required tracks). For full details of the experimental
results see [9].

There are several open issues in this new area of routing. For exam-
ple, although we have developed efficient algorithms for many special cases
of the segmented routing problem (as listed in Section 1.2), several other
interesting cases are yet to be solved; following are some relevant ones: 1.
channel length (N) is bounded; 2. connection lengths are bounded; and 3.
connections are non-overlapping. Also, no analytic methods for designing
segmented channels that will perform well for practical problems are known.
Moreover, as mentioned in the introduction, the segmented routing model
could be applied to configurable multi-processors; this area needs further
investigation.
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