
LABORATORY FOR ~~ i':itii¢if~iiTTS
COMPUTER SCIENCE ~ ~ TECHNOLOGY

MIT /LCS/TM-302

A SURVEY OF .ALGORITHfv1S FOR
INTEGRATING \!VAFER-SCALE

SYSTOLIC ARF{A YS

TOM LEIGHTON
CH ARLES LEISERSON

MAY 1986

545 TECHNOLOGY SQUARE. CAMBRIDGE. MASSACHUSETTS 02139

A Survey of Algorithms for Integrating Wafer-Scale Systolic Arrays

Tom Leighton

Mathematics Department and
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Charles E. Lciserscin

Laboratory for Computer Science
Massachusetts Institute ofTcchnology

Cambridge, Massachusetts 02139

Abstract- VLSI technologists are fast developing wafer-scale integration. Rather than par
titioning a silicon warcr into chips as is usually don e, the idea behind wafer-scale integration is
to assc;nble an entire system (or network of chips) on a single wafer, thus avoiding the costs and
performance loss associated with individual packaging of chips. A major problem with assem
bling a large system of microprocessors on a single wafer, however, is that some of t he processors,
or cells, on the ,vafer are likely to be defective. This paper surveys practical procedures for
integrating "::.round" such faults. The procedures are designed to minimize the length of the
longest wire in the system, thus minimizing the communication time between cells. Although
the underlying network problems arc NP-complete, all th_e procedures can be proved reliable by
assuming a probabilistic model of cell failure.

Key Words: .channel width, fault-tolerant systems, matching, probabilistic analysis, spanning
tree, ,;ystolic arrays, travelling salesman problem, tree of meshes, VLSI, wafer-scale integration,
wire length .

This r<'s<·arch was s11pr,ort.c-d in part hy the Drfcnst· J\dvanr<'d llcscarc-1, l'rojc•cts /\~ency 1111dPr Contract NOOOl-1-
80 C Ofi:.!:.! and i11 pa rt by t.l,c• Air Forcr unclc,r C:011tr:,,ts OSll. -8'.:? O:!'.!fi aucl OSH. 81i 0071i. Tom Lcip;hto11 .1nd
Char!C's Lcis('rson arr both s11pport.1·d in part by N SF l'rC'sidc·utial Yo11 11~ lnvc•sti;;ator Awards. l'o rtions of this
work ari• bas<"d on the· paper "\Vaf,·r-sc:ale ink/!:ratiort or systolic- arrays" by LC"ig:ht.011 and L<"is1•rson, whic:h appcar<"d
in JEJ,;E 1'tansactions on Computer 3, Vol. C - :!-1 , No. 5, pp. 1-1H 1fi I , May I 9S!">. (C) l!JS;> 11-:EI•:.

1

1. Introduction

VLSI technologists are fast developing wafer-scale integration [25] . Rather than partitioning
a silicon wafer into chips as is usually done, the idea behind wafer-scale integration is to assemble
an entire system (or network of chips) on a single wafer, thus avoiding the costs and performance
loss associated wit,h individual packaging of chips. A major problem with assembling a large
system of microprocessors on a single w2.fer, however, is that some of the processors, or cells, on
the wafer are likely to be defective, or dead. In this paper, we survey algorithms for constructing
systolic arrays from the live cells of a silicon wafer.

Laser-programming the interconnect of a wafer is one promising means of achieving wafer
scale integration. This technology was pioneered at IBM [21] and pursued in the direction of
wafer-scale integration at MIT Lincoln Laboratory [25] . Figure 1 shows a scanning electron

Figure 1. A close-up of laser-programmable interconnect.

microscope photograph of a portion of a wafer with programmable interconnect. Laser welds can
be made between two layers of metal, and by using the beam at somewhat higher power, wires
can be cut. Defective components can thus be avoided by programming connections between only ·
the good components:

Figure 2 shows a typical organization of a wafer-scale system with programmable intercon
nections. The components are organized as- a matrix of cells, and between the cells are channels
through which the interconnect runs. Figure 3 is a close-up of the channel structure. At the
intersection of a horizontal and vertical channel, laser-programmable connections can make a
horizontal and a vertical wire electrically equivalent. Between two cells, connections can be made
from the wires in the channel to the inputs and outputs of the two cells. Given that the inter
connect is programmable, we shall adopt a usage of the term "wire" to mean an electrically
equivalent portion of the programmable interconnect.

Systolic arrays [12, 13, 20] are a desirable architecture for VLSI because all communication
is between nearest neighbors. A realization of a systolic array as a wafer-scale system may lose
this advantage if all nearest neighbors of a processor are dead, however, because a.long wire may

2.

Figure 2. A wafer-scale system of cells and programmable interconnect.

Figure 3. The channel structure of a wafer-scale system.

be needed to connect electrically-adjacent proce.ssors. In general, the longest interconnection
between processors is the communication bottleneck of the system. Of the many possible ways

in which the live cells on a wafer can be connected to form a systolic array, therefore, the one

that minimizes the length of the longest wire is most desirable.

To illustrate the subtleties inherent in configuring systolic arrays; consider the problem of
constructing a linear (i .e., one-dimensional) array using all of the live cells in an N-ccll wafer.
Unfortunately, if we wish to minimize the length of the longest wire, the problem is NP-complete
[10]. Even more discouraging is that there are some arrangements of live and dead cells for which
even the optimal linear array has unacceptably long wires. Thus optimal solutions- even if they

could be l'ound quickly- are not always practical.

3

By assuming a probabilistic model of' cell failure, however, many posiLive results can be proved.
For example, Figure 1 illustrates a possible solution to the problem of connecting the live cells
of' a wafer into a linear systolic array~ The live cells, which arc denoted by small squ~rcs, are
conncdcd together, one after another, in a snake-like pattern . Dead cells, denoted by X's, are
skipped over. With probability at least 1 - 0(1/ N), the length of the longest wire is O(lg N),
where N is the number of cells in the waf'er and where ea.ch cell independently has a 50 percent

X X

X X X

X

C X X X

X rD-0
Figure 4. A simple means of constructing a linear systolic array from the live cells on a
wafer.

chance of failure.*
This bound comes from the observation that the length of the longest wire that connects two

cells in the array is just the length of the longest sequence of dead cells in the snake-like string.
For a given set of' k cells, the probability that all are dead is 1/2\ and thus the probability that
any set of 2 lg N cells are dead is 1/ N 2 • Since there are less than N sets of 2 lg N consecutive
cells, the chances are thus less than one in N of having to skip more than 2 lg N cells in the
entire snake-like path of length N. Hence the maximum wire length is O(lgN) with probability
at least 1 - 0(1/N).

To say that "with probability 1 - 0(1 / N) the maximum wire length is O(lg N)," is a substan
tially stronger statement than saying that the expected maximum wire length is O(lg N). This
is because no wire can ~ver have length greater than 0(../Fi), even in the worst case. Hence the
expected maximum wire length is at most

(1-0(1/N)) · O(JgN) + 0(1/N) · O(VN) = O(lgN)

Moreover, the chances that the maximum wire length is much greater than O(lg N) are miniscule.
In particular, the probability of having to skip more than k lg N dead cells at a fixed point in
the snake-like path is less than one in Nk. Hence, every wire has length at most k lg N with
probability at least 1 - 1/Nk-1 .

*Ilerc and t,hroughout, the paper, we use O(/(N)) t,o denot,e a fundion t,hat, is bounded above by cf(N) for a fixed
ro11st,ant, c and all suflir.icnl.ly large N. We also use 0(/(N)) to d-enok a function Lhat, is bounded below hy cf(N),
and H(f(N)) t,o dcnot,c a f'unc:Lion Lhat, is houndr:d above by cif(N) and below hy c~f(N) for some fixed con$tants
c, c1 and c2, and all sullic:icntly large N. We also use lg N to denote log2 N, ll N lo denote (lg N)\ and lg lg2 N
to denote (lg lg N)2

• La.sLly, l X j dcnoLcs the largest integer less than or equal to x, and f X l denotes the smallest
integer greater than or equal to ,:,

4

This paper presents a survey of algorithms for realizing one- and two-dimensional systolic
arrays as wafer-scale systems. Unlike many of the heuristics in the literature, the algorithms
here have all been theoretically analyzed, and bounds on their quality have been mathematically
proved. The analyses make the assumption that _each cell fails independently· with probability·

p, and for simplicity, we assume here that p = ½- We also assume for ease of explication and
analysis that the width of a cell and the width of a wire are each unity. A more complete
discussion of the assumptions and their generalizations can be found in [17].

The algorithms are organized to aid an engineer in picking an algorithm for implementation.
We try to present enough mathematics to aid his intuition, but we do not, for the most part,
include the detailed combinatorial arguments appearing in the literature that substantiate the
effectiveness of .the algorithms. Since programming involves many more "real-world" constraints
than can be considered in an algorithmic analysis, we expect that the engineer might choose a
less effective algorithm, for example, if it is easier to code. The algorithms here constitute a menu
of possibilities to stimulate an intelligent design decision.

The remainder of the pap~r is divided into four sections. Section 2 contains basic com
binatorial facts underlying the probabilistic analyses used in the literature. Section 3 gives two
algorithms for integrating linear arrays. The first algorithm connects all the live cells on a wafer,
and the second achieves somewhat shorter maximum wire length by connecting only a large
constant, fraction of the live cells. Section 4 gives five algorithms for integrating two-dimensional
arrays, and includes both worst-case and probabilistic bounds. Section 5 discusses provides a
summary of the material covered in the paper and mentions some related work.

2 . Combinatorial facts
In the introduction, we showed that with probability at least 1 - 0(1/ N), a sequence of N

cells on a wafer cqntains no more than O(lg N) dead cells in a row. This kind of' high probability
analysis underlies most of the algori thms in this paper. We shall use the term "high probability"

to mean "with probability at lea/Jt 1 - 0(1/ N)," where N is the number of cells on a wafer. We
now present some basic facts used in high probability analyses.

The first fact is the standard definition of independence.

Fact 1. Let A and B be independent random variableiJ. Then

Pr {A n B} = Pr {A}Pr {B}. I

The second fact bounds the probability of the union of two random events, even if the events are
not independent.

Fact 2. Let A and B be random variables. Then

Pr {AU B} ~ Pr {A} + Pr {B} .

c:..

Proof. This fact follows from the principle of inclusion and exclusion. We always have

Pr {AU B} = Pr {A} + Pr {B} - Pr {An B},

and since Pr {An B} ~ 0, the result follows. II

Fact 2 provides a weak bound if the probabilities involved are large. For example, if the
probability of the individual events are each greater than 1 / 2, the bound on their union is trivial.
When the probabilities are small, however, the bound can he useful.

The next fact bounds a linear function with an exponential. It is most useful when x is near
zero.

Fact 3. For all x in the range -oo < x < oo, we have

We now turn to combinatorial theorems that deal more directly with the sLatistics of faults
on wafers. As was mentioned in the introduction, we shall typically assume that each cell on the
wal'cr !'ails independently with probabilit.y 1/ 2.

Fact 4. With high probability, a given rectangular pattern of Hve and dead cells of size 2 lg N
never appears on an N-cell wafer.

Proof. The proof follows the analysis for the snake-like scheme in the introduction, which relies
on Fact 2. The generalization from one- to two-dimensional regions is straightforward, as is the
generalization from a pattern consisting solely of dead cells to an arbitrary pattern. I

Of course, Fact 4 does not imply that no pattern will occur, only that the probability that a
given pattern occurs is low. It's like the lottery: somebody will win, but probably not you.

Remarkably, patterns of slightly less than half the size almost always appear on a wafer.

Fact 5. With high probability, a given rectangular pattern of live and dead cells of size
lg N - 2 lg lg N appears somewhere on an N -cell wafer.

Proof. Partition the wafer into N /(lg N - 2 lg lg N) rectangular regions of size lg N - 2 lg lg N:
The probability that a given one of the regions realizes the pattern is

2- 1gN+21g 1gN = 1 _ lg
2

N
N

The probability that every region avoids the pattern is therefore

(1- lg2;)1gN-;'lglgN ::; e(-¥)(1sN-;'lgigN)

lg2 N

using Facts 1 and 3. I

In a region of m cells on a wafer, the expected number of live cells is ½m, The actual number
will vary, however. The next fact gives tight bounds on the expected deviation.

Fact 6. Let X be the random variable indicating the number of live cells in a region with m
cells. Then the expectation of the deviation is

Fact 6 tells us that the expected deviation from the mean is 0(vm). We shall occasionally
need to bound the actual probability of some given deviation. The next fact provides such a
bound.

Fact 7. Let X be the random variable indicating the number of live cells in a region with m
cells. Then for r 2 0, the probability that the deviation exceeds rjrn is

We can use Fact 7 to prove a lower bound on the number of live cells in each of a collection of
sufficiently large regions. The next fact shows that if each region contains c lg N cells, for some
sufficiently large constant c, then with high probability, there are a substantial number of live
cells in the each of the regions.

Fact 8. For any c > 4, and for any particular collection of N regions on an N-cell wafer,
each with at least c Jg N cells, the probability is at least 1 - 0(1/ N) that every region contains

½c lg N - Jc lg N live cells.

Proof. The probability that a given region does not contain at least ½c lg N - Jclg N live cells is
O(e-21s N) = 0(1/ N 2) by Fact 7. By Fact 2, the probability that all the N regions on the wafer,
overlapping or not, fail to contain at least ½clgN - JclgN cells is at most N • 0(1/N2

) =
0(1/ N). I

3. Integrating one-dimensional arrays

With high probability, the snake-like scheme described in the introduction connects all the
live cells on an N-cell wafer into a linear array with wires of length at most O(lg N). This section
gives two procedures that substantially improve and generalize this bound. The first connects all
the live cells on a wafer with wires of length 0(y'lg N), and the second connects most of the live
cells with wires of constant length.

Before presenting the algorithms, we first observe that with high probability, wires of length
0(y'lg N) are required to connect all the live cells on a wafer. The idea is that somewhere on
the wafer, there is a live cell in the center of a square region of O{lg N) dead cells, an observation
that follows directly from Fact 5. (An example of such a region is shown in Figure 5.) Ther~fore,
a wire of length fl(y1gN) is required to link the isolated live cell to any other live cell.

7

isolated
eel I

Figure 5. An example of an isolated cell.

3.1. The patching method

The first algorithm for integrating a linear systolic array achieves the lower bound of 0(Jlg N)
by partitioning the wafer into squares, forming linear arrays within each square, and then
patching together the ends of the small linear arrays to yield a single linear array consisting
of all the live cells on the wafer.

More precisely, the method is as follows. Partition the wafer into square regions containing
2 lg N cells each, as is shown by the <lashed lines in Figure 6. The probability that each of the

r - - - - · - , - - - - - r - - - - -,

i L : : = ~-·-t-1 ~ = r ! :ixl~: 1 ~ X 1

I '----------" 1 I ~ _____ I ______ L _ _ ~

I I I I

1 X 11XXX:rnl
1 x ~J __ :1 x , x x 1 '12 log N
I I ,----1----- I
1:X XIX ~x IX :
I I I I .

;t-x-=--fil-~:ill-x : .:iJ-: I 1: .,:.JI: l...,1
I . X X : • X 6---~ ~ X X I
I X .

1
' X I X I

I I

L-------'--- - -....J - - ----'

Figure 6. A scheme for constructing linear arrays from all live cells on a wafer with wires
of length 0(JlgN) and constant channel widths.

2 lg N cells are dead in one or more of the squares is less than 1/ N by Fact 4. Thus, with high
probability, each of the squares contains at least one live cell.

Construct a linear array out of t he live cells in each square using a snake-like scheme on the
columns of the square, except that when an empty column is encountered, skip over it. Figure 6
shows these conn<'c:tions with solid lines. Since any pair of cells in the same square can be linked
with a wire of' length at most 2V2 lg N, the wires in each array have length 0 (Vig N). Next,
add wires, shown by dotted lines in the figure, to connect the small arrays into one large array.
Because each region contains at least one live cell, these connections can be made with wires of

length at most 3V2 lg N. Thus, every wire in the completed linear array has length 0(Vig N)
with high probability.

3.2. The tree method

If all the cells are incorporated in a linear array using the patching method, then the maximum
wire length is 0(y1gN) with high probability. But the proof of the lower bound suggests that
isolated cells induce the long wires. Instead of insisting that all live cells be incorporated in the
linear array, suppose we only require that most of the live cells be included. This section describes
a procedure that can construct a linear array from almost all of the live cells with constant-length
wires.

The procedure relies on the fact that most live cells on the wafer are near each other. More
specifically, it has been proved [17] that there exists a posit ive constant c such that for any d,
with probability 1 - 0(1/ N), at least 1 - 0(2-cd

2
) of the live cells on an N-cell wafer can be

connected in a tree using wires of length at most d. Up to constant factors, this is the best
possible bound.

The algorithm consists of two parts. First, a tree T of live cells is constructed with wires of
length at most d, and then the tree is transformed into a linear array with wires of length at
most 6d. (The constant 6 is due in part to our· assumption that the width of a wire equals the
width of a cell. If wire widths are substantially smaller, the constant shrinks closer to 3.)

The tree T can be constructed by any of the algorithms that compute the minimum spanning
tree of a graph. In particular, Prim's method [1, 5, 24] can be modified to compute the spanning
tree in linear time.

The construction of the linear array from the tree depends on a result by Sekanina [29] which
states that the cube of a nontrivial connected graph always has a Hamiltonian circuit. Specifically,
we now show that, without regard for wire widths, the linear array can be constructed using wires
of length 3d by tracing over wires in the tree T no more than twice each. Since every wire is
t raced over at most twice, the channel widths could (at worst) double in the resulting wiring,
thereby increasing the maximum wire length from 3d to 6d when wire widths are accounted for.

Choose a node v to be the root of T, and let Ti, T2, . .. , Tm be the subtrees of v as is shown
in Figure 7. (Degenerate cases not like Figure 7 are easily handled, but we do not include the
details here.) Recursively construct linear arrays on the nodes of T1,T2, ... ,Tm such that no
wire has length greater t han 3L, and so that the end points of the array in Ti are Vi and Ui1

for l ::; i ::; m. Then join the arrays in the subLrees by adding the following wires: (v, uu),
(V1, u2i), (v2, u3i), ... , (v=-1, u~i). (These wires are shown as dashed lines in Figure 7 .) Each of
these wires has length at most 3L, and the result ing network is a linear array on the nodes of
T with endpoints v and V171 • For completeness, we remark that the boundary conditions of the
recursion are easily handled.

q

T
V

Figure 7. Constructing a linear array from a spanning tree.

4. Integrating two- dimensional arrays

The problem of linking the live cells on a wafer to form a square two-dimensional systolic
array is substantially more difficult than the corresponding problem for linear arrays. The main
difliculty with constructing two-dimensional arrays is that constant length wires no longer suffice

even if we throw away some of the live cells [8]. In fact, it has been shown [17] that with high
probability, every realization of an M-cell two-dimensional array on an N-cell wafer has a. wire
of length D(✓lg M), for all M = O(lg2 N). This result means, for example, that wires of length
0(-✓fg°N) a.re required to connect just one percent of the live cells.

In order for an algorithm to be effective in realizing a two-dimensional array, it must respect
the two-dimensional constraints inherent in the problem. For example, consider the following
naive algorithm for realizing an M-cell square two-dimensional array from all the live cells of an
N -cell wafer. We assume for convenience that M ~ N / 2 is a perfect square.

Take the top v'iJ live cells on the wafer, breaking ties randomly. These cells, in order le~
to right, make the first row of the array. Take the top ,/M cells of the remainder as the second
row, in order left to right, and continue similarly to make each row of' the array. With high
probability no row of the array contains cells from more than three rows of the wafer because
Fact 8 guarantees that every row contains nearly ½../N ~ 0.7../M live cells.

At first, this method does not seem so bad because (Fact 5) the horizontal connections among
the cells of the array have length 0(lg N). The vertical connections are much worse, however.
Consider a vertical line which divides the wafer into left and right halves. Fact 6 says that we
can expect that the number of cells in a given row on one side of the dividing line is at least

n(../JM) = D(N114
) larger than the number on the other side. Thus, with constant probability,

the midpoint of the row is at least D(N114) cells away from the dividing line. Two consecutive
rows have their midpoints on opposite sides of the dividing line half the time, and thus, with
constant probability, a wire connecting the two midpoints has length D(N114). Since there are
,/M rows, there is a wire of length O(N114) between two of them ,vith high probability. A bound
of 0(N114 y'IgN) for the maximum wire length in the resulting array can be shown with more
detailed analysis.

({)

4 .1. The tre e- of- meshes method

This section presents an algorithm which can constuct a two-dimensional array from all the
live cells of an N -cell wafer if the channels have width 0(1~ N). All possible configurations of live
and dead cells, however unlikely, can be handled by .this technique, but the wire length bounds
are not good. This result will be used as a subroutine in the divide-and-conquer and patching
methods to achieve better bounds for wire length on average-case wafers.

We fi rst show how an N -cell wafer with channels of width 8(lg N) can be viewed as an N -leaf
tree of meshes [2, 14, 15, 16]. The tree of meshes is constructed from a complete binary tree by
replacing nodes of the tree with meshes and single edges of the tree with bundles of edges linking
the meshes. Figure 8 shows a 16-leaf tree of meshes. The root of an N -lcaf tree of meshes is a
../N-by-../N mesh. (We assume for simplicity that -/Iv is a power of 2.) The nodes at the second
level are -/Iv / 2-by-./N meshes, those at the third level are ffe /2-by-../N /2 meshes, and so on
until the leaves are replaced by 1-by-1 meshes.

F igure 8 . The 16-leaf tree of meshes.

The correspondence between the N -cell wafer and the N -leaf tree of meshes is established as
follows. The first step is to construct a lg N-layer three-dimensional layout [18, 26] of the t.ree of
meshes. Fold the connections between the root of the tree of meshes and each of its two children
so that the children fit naturally on a second layer over the root. Fold the connections to each of
the g;randchildrcn so that they fit natu rally over the children on a third layer, and so forth. This

procedure generates a lg N -layer three-dimensional layout where each layer has area N. Next,
project the three-dimensional layout onto a single layer in the manner of [31, pp. 36- 38]. Locate
cells of the wafer at the leaves of the tree of meshes. The cross points of the meshes become
programmable switches, and the wires of the meshes become the wires in lg N -width channels.

We now wish to make a two-dimensional array from the M ~ N /2 live leaves of the tree of
meshes. (In general, an exact square array is not possible, and thus we shall assume the array to
be for med is missing some border cells, as is shown in Figure 9.) We first use divide-and-conquer
to assign each cell a number from 1 to A-1. We chop the M -cell array in half vertically into two
subarrays with lM/2J and fM/21 cells. We recursively assign numbers from 1 to lM/2j to the
first subarray and numbers from. r M /21 to M to the second subarray, alternating the orientation
of the cut between horizontal and vertical at each recursive step.

II

•

•
• cu t - wires

•

•

• • • •
Figure 9. A 6-by6 arr ay that is missing some border cells.

The assignment is now simple. The ith cell of the array is mapped to the ith live leaf of
the tree of meshes counting from lett to right. Atter swelling t he channel capacities by a small
constant factor to accommodate the wires, adjacent cells can be connected by routing wires
through the unique path in the underlying complete binary tree. Routing through the meshes .
can be done by treating them as crosspoint switches. The wire lengths are 0(../Nlg N) since we
need to route across 0(../Fi) channels of width 0(lg N).

As a practical matter, the tree of meshes need not be used directly for routing wires. The
assignment algori thm can be used to establish the correspondence between the two-dimensional
array and the live cells of the wafer, and then the wires can be routed using a standard gate-array
routing program. In t he case when ./M is an exact power of 2, the assignment is particularly
simple. The kth live cell corresponds to the (i, j) position of the array, where i is obtained by
concatenating the even bits of the binary representation of k, and j is obtained by concatenating
the odd bits.

4.2. The divide-and- conquer method

The tree-of-mes.hes algorithm works as well as might be expected in the worst case, and
thus it is natural to wonder how well it works on average. Unfortunately, the algorithm works
poorly in a probabilistic model because the maximum wire length is nearly always large. This
section presents a similar divide-and-conquer algorithm which works poorly in the worst case, but
which can be proved to work extremely well on average. With high probability, the algorithm
connects all the live cells of an N -cell wafer with channels of width · 0(lg lg N) using wires of
length 0(lg N lg lg N).

The divide-and-conquer algorithm has two stages. In the first stage, the wafer is recursively
bisected, and ·the number of live cells in each half is counted . Based on the count of live cells in
each half of the wafer, the algorithm computes the dimensions of the two subarrays that must be
constructed, and then recursively constructs the subarrays. The two subarrays are then linked
together to form the complete array. The algorithm remains in the first sLage as long as the
distribution of cells wiLhin the current region of the wafer is good, which (with high probability)
is until subproblems with E-)(lg N) cells are encountered. Below th is point, the distribution of cells

can be arbitrarily bad, and thus the algorithm uses the Lree-of-meshcs technique t,o complete the
wiring of a 0 (lg N)-cell subarray. The exact crossover point between the first and second stages
can be set at subproblems of size c lg N, where c is any constant suflicicnt.ly large to ensure !,hat

with high probability, every c lg N-cell region contains O(lg N) live cells. That such a c exists is
a consequence of Fact 8.

Figures 10 through 13 illustrate the divide-and-conquer procedure. Figure 10a shows a 64-cell
wafer which contains 36 live cells. In what follows, we step through the algorithm as it constructs
a 6-by-6 array, which is identified as the "overall target" in Figure 10b.

D X D D X X D X

D D X X X D D X

X D X X D X D D

D D X D D X X X

D D D X X D D X

D X X D X D X D

D D D X X D D D

X D D X D X D D
Figure 10a. A 64-cell ~af er that contains 36 live cells.

Figure 10b. The target: a 6-by-6 systolic array.

13

The first step js to bisect the wafer vertically, which gives 19 live cells in the left half and 17
in the right. We wish to construct a 19-cell subarray in the left half wafer and a 17-cell subarray
in the right half wafer. Since we want the two subarrays to fit together nicely after they have
been constructed, we choose the shapes of the two subarrays that are determined by the partition
of the 6-by-6 array shown in Figure 11.

left-ha lf target righ t - half

split~· target

Figure 11. Partitioning the target ..

We now invoke the procedure recursively on the two subarrays, but this time we bisect each
of the halves horizontally. For example, when the left half wafer is bisected, the 19 live cells arc
divided into 9 cells above and 10 cells below, as displayed in Figure 12. The algorithm continues
in this fashion, alternating between horizontal and vertical divisions, until the wafer and the
target have been partitioned into 0 (lg N)-cell regions, at which point the algorithm proceeds to
the second stage, and the tree-of-meshes technique is applied.

upper left
target - - -EH

---.
. I I I

split-+ zzzz z:222242 222?2 2 2 22 2222

lower left
target

I I :

Figure 12. Partitoning the left target.

In this example the number of cells is small enough that the second stage construct.ion can
be performed by inspection. The inspection strategy can be used effectively in practice. Since
the second stage operates on regions of size 0(lg N), the routings of this size can conceivably be
precomputed. The second stage then consists of a single table lookup.

Figure 13 shows the final solution to the problem in Figure 10. For clarity the wires have not
been routed within the channels of the wafer. Notice that each quadrant contains the specified

,,----
'

\ X X
\
I

X I X X
I
I
\

Figure 13. Completed cell assignment and wiring of the 6-by-6 array.

targets for second level of recursion. The dashed lines represent wires that connect cells in
different quadrants of the wafer.

With probability 1- 0(1/ N) the divide-and-conquer method can construct a two-dimensional
array from all the live cells on an N -cell wafer using wires of length O(Jg N lg lg N) and channels
of width O(lg lg N) . It is not too difficult to see that these bounds hold with probability 1 for
the regions of size less than c lg N that are connected by the tree-of-meshes procedure. Plugging
in c lg N for N in the tree-of-meshes bound yields wires oI length 0(Vig N lg lg N) and channels
of width O(lg lg N).

The hard part is showing that the wiring in the upper levels of recursion satisfy the bounds.
The analysis, which we briefly sketch, assumes that during the recursion, the channel dividing a·
subwafer with m > c lg N cells has width 0✓lg N lgrn. Uniform channel widths of lg lg N across
the entire wafer can later be obtained by distributing the wider channels across neighboring
channels, which does not asymptotically increase the wire lengths in the subsequent analysis.

We begin at the first level of recursion. Consider the wires that link a cell in the left subarray

to a cell in the right subarray, as is illustrated by the two examples in Figure 14. For the most

IS

--□ - -

' I 1 I I

Figure 14a. A distribution of live cells which might allow a narrow center channel.

~
~ I
~ /,
~ //

/ //
/ / / I

I
/ / /

~ / / /
/I ~ / /: /

II ,I' I ✓ I - -,,, 1 I ,I' ,,. M' ,,. /. ,, / ·" , ,
'1 / ,,

{lixfs
/ / / I 1,
/ / I /

2 , 8 / I I
/ / I I

array / I / ' / /
l/ / /

/ / I,
/

Figure 14b. A distribution of live cells which requires a wide center channel.

parL, the connecLing wires can be routed in the channel that scparaics the left and right halves
of the wafer. The length of Lhc longest wire in the channel is proportional Lo the lon_gest vertical
distance that a single wire must traverse, as is the width of Lhe channel itself.

The length of Lhe longest wire in the cent.er channel depends on the distribution of cells in
each quadrant. For example, if we are extremely lucky and the live cells arc regularly spaced,
Lhe longest wire may have constant lcngLh, as in Figure J,1a. Bui if we arc very unlucky, half the

live cells might occur in the upper right quadrant and the other half in the lower left quadrant
(Figure 14b). To connect the two halves in this latter case, some wire must have length O(vN).

The length of the longest wire in the center channel can also be influenced by the distribution
of cells within a quadrant. For example, if the upper left quadrant contains '1JV!8 live cells
(about the right number), but they are distributed as in Figure 15, then the center channel still
contains a wire of length 0(,/N).

Most often, we are not so unlucky that a wire in the center channel has length 0(,/N), but
neither are we lucky enough that all wires are constant length. With high probability, we are
more lucky than unlucky because the length of the longest wire in the center is O(lg N). The
idea is that the live cells are distributed so evenly that with high probability, the total vertical

16

Figure 15. Another distribution of live cells which requires a wide center channel.

distortion of the wires in the center channel (over all subproblems of size O(lg N)) is O(lg N). For
channels dividing a subwafer of size m > clgN, the vertical distortion is O(JlgmlgN). Thus,
the channel width bounds assumed earlier suffice.

The wire length analysis of the divide-and-conquer algorithm is fairly tight. For example,
the algorithm requires wires of length O(lg N) with high probability. Thus, if the lower bound
of 0(Jlg N) is to be -achieved, a different algorithm must be discovered. It may be possible to
improve the channel width bound, however: For example, any improvement in the worst-case
bound given by the tree-of-meshes technique would lead directly to an improvement in the channel
width bounds for the divide-and-conquer algorithm.

4.3. The patching method

Not surprisingly, we can improve the wire length bounds if we need only construct a two
dimensional array from most of the live cells on a wafer. In particular, we can use a scheme similar
to the patching scheme from Section 3.1 to construct a two-dimensional array from any constant
fraction (less than 1) of the live cells on an N-cell wafer using wires of length 0(Jig N lg lg N)
and channels of width O(lg lg N). These bounds are also achieved with high probability.

The key idea is to partition the wafer into N /c lg N square regions, each containing m =
c Jg N cells. According to Fact 8, we can choose c sufficiently large such that with probability
1-0(1/N), each of the regions contains at least m' = ½clgN-,/clgN live cells'. Using the
tree-of-meshes technique, we can therefore construct an m'-cell two-dimensional array in each
region using wires of length O(y'm lgm) = O(y'igN lglgN) and channels of width O(lgm) =
O(Ig lg N). The N / c lg N two-dimensional arrays are then connected together into one large
array with ½ N(l - 2/ Jc) live cells. The added wires also have length at most 0(Jlg N lg lg N),
and can easily fit into the 0(Ig lg N)-width channels.

The patching method can be thought of as a refinement of the divide-and-conquer method
that throws away a fraction of the cells at each level of the recursion. The actual decisions as to
which cells at a given level are thrown away can be postponed until lower in the recursion, but
it is important that at each level, every region of the wafer have exactly the same number of live
cells.

4.4. Greene's method

The next method, due to Greene [7], also connects any constant fraction or the live cells on

an N-cell wafer into a two-dimensional array. With high probability, it uses wires of length

n

0(v'fg]V) and channels of constant width, thus achieving the lower bound for integration of two
dimensional arrays. It is similar to the algorithm presented at the beginning of this section in that
it creates rows of the array, but it is considerably more clever. The algorithm that determines
the rows and columns of the array is based on network flow techniques, but we present it in a
manner that does not require a knowledge of combinatorial optimization.

Greene's algorithm can construct a (1 - E)v'JV-by- ½(1 - E)'/N array, for any constant E > 0.
For any such E, we require the N -cell wafer to have channels of width w, where w is a sufficiently
large constant that depends on E. The higher the percentage of cells we wish to integrate into an
array, the wider we must make the channels.

Partition the wafer ~s shown in Figure 16 into blocks of size l-by-c1 ../lgN such that there
are '1N rows of blocks and 'IN /c1 ../fgN columns of blocks, where c1 is a constant depending

T
-IN"

BLOCKS

l
2 BUNDLES OF
W/2 TRACKS EACH

./if
BLOCKS

(end)

(' ~~----t-t--+--+--+--+-+

w 12 TRAC K S t-t---+-+-+-!-+--l--t---+-

Ct ../igN ELEMEt\lTS

Figure 16. Forming the tentative rows in Greene's method. Blocks containing fewer than t
live cells are marked with solid X's. Blocks marked as bad during the scan are marked with
dashed X's.

on€. Mark a block as bad if it contains fewer than t live cells, and good otherwise, where tis also
a constant depending on E. For the exact values of constants, we refer the reader to [7].

The first part of the algorithm determines tentative rows for . the array. We divide the w
vertical tracks between blocks on the wafer into two bundles, each consisting of w /2 tracks. For
this part of the algorithm, we will treat the two bundles as two routing tracks. Later, we will
need to reexpand the capacity of the two tracks by w/2 each. ·

The algorithm first determines (1 - E)./N horizontally running chains from the le~ edge of
the wafer to the right edge through the good blocks. The chains must satisfy the constraint that
no wire is longer than c2 Jig N, for some constant c 2 depending on E. The algorithm determines
the chains in the following manner. Scan the columns of blocks left to right. For each column,
proceed through the blocks from top to bottom. At each point, if the current block is good, we
attempt to connect it to a good block on the left. This connection is made to the uppermost
good block within distance c2 JlgN, up or down, from the current block that has not yet been
connected to a block in the current column. It must also satisfy the constraint that the routing
does not exceed the channel capacity of 2. If such a connection cannot be made, we mark the
current block as bad. Block (5,2) in Figure 16 is marked bad for this reason. Some chains are
terminated by this procedure-for example, the chain ending in block (3,2) of the figure. With
high probability, however, this procedure establishes (1 - E)./N horizontal chains, each with
./N / c1 JigN blocks.

The horizontally running chains can be viewed conceptually as shown in Figure 17. We now
expand the blocks in the chains to see their internal structure, as shown in Figure 18. The

T
0- e).fii
BLOCKS

l
BUNDLE
OF W/2
TRACKS

r-
1-
(

l==

BLOCKS

r
W/2 TRACKS (----t-----

l~~,---t-r-

C1 /igN ELEMENTS

Figure 17. Normalized view of the rows of blocks.

/9

(1 - t) ./N
ELEMENTS

I ~~--- -IN ELEMENTS

Figure 18 Forming the columns in Greene's method. Dead cells are marked with solid X's.
Cells marked as bad during the scan are marked with dashed X's.

horizontal t racks in Figure 18 actually correspond to sections of both horizontal and vertical
t racks in Figure 16 because the chains run both horizontally and vert ically. The horizontal
channels in Figure 18 have w/2 tracks, and thus the two vertical tracks between blocks in Figure
16 must each be expanded by w/2 to accommodate the wires we shall now route to make the
vertical connections.

We establish the vertically running chains by essentially the same procedure as before, ex
cept we scan top to bottom and route through horizon tal channels of width w/2 . With high
prob;,1bilit.y, the algorithm constructs ½(I -t)..Jlv vertical chains. The horizon tal chains arc now
modified to include only those cells used in the vertical chains, which completes construction of
the (1 - l)../7v-by-½(I - E)v'N array. All channels arc constant width w, and it turns out to be
the case that all wire lengths are 0(,./fgR).

Greene's method generates a rectangular array with aspect (length to width) ratio 2, but
we may wish to realize a square array without throwing away half the cells. By embedding a
(1 - E).JFf72-by-(1 - E)-Jii[fi, square array into a (1 - E)Jiv-by-½(1 - E)Jiv rectangular array
so that adjacent cells of the square array are constant distance away in the rectangular array,
we can use Greene's method di;ectly. The first row of the square is embedded in the first two
rows of the rectangle such that all the first row of the rectangle is used and an evenly spaced
portion of the second row is used. We connect the cells of the first row of the square linearly
left to right in the rectangle. The second row of the square is embedded linearly in the second
and third rows of the rectangle using all t he remaining cells in the second row and a uniformly
spaced portion of cells in the third row. The third row of .the square uses all the remaining cells
in the third row of the rectangle, all the cells in the fourth row, and a uniformly spaced portion
of cells from the fifth row. We continue in this fashion until the embedding is completed. Every
adjacent pair of cells in the square array are within hori~ontal and vertical distances of four cells
in the rectangular array. This procedure can be generalized to construct any rectangular array
of any aspect ratio.

4.5. The matching method

We conclude with a method whose proven bounds are not as good as those presented thus
far, but which is nevertheless interesting. In the case of widthless wires, this method, which is

2.0

based on bipartite matching in a graph, can integrate all the cells on an N -cell wafer with wires

of length O(lg314 N). When we consider the. normal case of unit width wires, however, we could
conceivably need channels of width 0(lg314 N), and because the wires would need to cross these
channels, wires of length O(lg312 N). This algorithm is certainly worth considering when wire
widths are small because the O(lg314 N) wire-length bound· is better than the bound of 0(lg N)
which the divide-and-conquer method yields for widthless wires. Moreover, the true performance
of the matching method might be better than that suggested by t he upper bound for unit-width

wires. In comparison, the divide-and-conquer method has a hard lower bound of 6(lg N) even
for widthless wires. In addition, the algorithm is easily tailored to handle the situation when we

wish to integrate any constant fraction of the live cells, in which case the widthless wire bound
shrinks to 0(y'IgN), which is optimal.

The first step of the matching method is to determine the number M of live cells on an
N -ccll wafer. Then we pick a target wire length d that we hope to achieve. The algorithm now
determines the locations of points in a uniform ../M-by-,./M grid superimposed on the wafer.· It

then constructs a bipartite graph between the grid points and the live cells of the wafer with an
edge between a grid point and a live cell if the distance between them is at most d. Then, using
a bipartite matching algorithm [5], the procedure determines whether every grid point can be

matched one-to-one with a live cell. If a perfect matching exists, then we know a routing of the
corresponding assignment with widthless wires has maximum edge length d.

1t is possible to show [19, 30] that if d = 8(1g314 N), then the matching succeeds with high
probability. As a pracLical maUcr, it is better 1.o search for the smallest d thaL works for a given
wafer using exponential search. Try d = 1, 2, 1, 8, ... unti l a value of dis found Lhat results in a

perfect matching, and then binary search to find the exact value.

The same technique can_ be applied to construct a two-dimensional array from any number

m < M of the M live cells by using a y'm-by-,/m grid. For the case when m = (1 - E)M, it
can be shown that wires have length 0(v'fg]V) with high probability.

5. Summary and conclusions

The content of this paper is taken primarily from [17] and somewhat from [7] and [8]. The
algorithms presented arc summarized in Tables I and II. The literature contains many more
techniques for integrating systolic arrays. Manning [22, 23], Hedlund and Snyder [9], Koren
[11], and Fussell and Varman [6] look at the basic problem of constructing arrays from wafers

containing faulty cells. Rosenberg [27, 28], Chung, Leighton, and Rosenberg [3, 4], and Bhatt
and Leighton [2] have also investigated fault tolerance.

21

Method

patching
optimal

. tree

Method

tree of meshes
optimal

Method

divide & conquer
matching
optimal

Table I
Bounds for One-Dimensional Arrays

Portion of Maximum
cells used wire length

all 8(.,/logN)
all 8(y'logN)
99% 9(1)

Table Ila
Bounds for Two-Dimensional Arrays
(worst-case wafer, using all live cells)

Maximum
wire length
for widthless
wires

9(✓,v)

9(✓,v)

Maximum
channel width

0{logN)

0(1)

Table Ilb
Bounds for Two-Dimensional Arrays

(average-case wafer, using all live cells)

Maximum wire
length for
widthless wires

9(logN)
0(log3

/ 4 N)

fl (.,/logN)

11.1:aximum
channel width

0(!oglogN)
O(!og3

/
4 N)

0(1)

Table Ile

Maximum
channel width

8(1)
8(1)
0(1)

Maximum wire
length for unit
width wires

0(✓,.llogN)

fl{v'N)

Maximum wire
length for unit
width wires

0 (log N log log N)

0(log3
/

2 N)

fl(y1og"N)

Bounds for Two-Dimensional Arrays
(average-case wafer, using 99% of the live cells)

Maximum wire Maximum wire
Method length for Maximum length for unit

widthless wires channel width width wires

patching 9(y1og"N) 0(loglogN) 0(y'logN!oglogN)
Greene 9(y1og"N) 0(1) 8(,/logN)
matching E>(y1og"N) 0 (.,/logN) 0(logN)
optimal 8(y'JogN) 9(1) 8(y'JogN)

2 2.

I

Acknowledgments

We would like to thank the members of the MIT Lincoln Laboratory Restructurable VLSI
project for acquainting us with the details of their work and for providing the photographs in
Figures 1, 2, and 3.

Refer ences

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithms, Addison
Wesley, Reading, Massachusetts, 1983.

[2] S. N. Bhatt and F . T. Leighton , "A framework for solving VLSI graph layout problems,"
Journal of Computer and System Sciences, Vol. 28, No. 2, April 1984, pp. 300-343.

[3] F . R. K. Chung, F. T. Leighton, and A. L. Rosenberg, "Diogenes: a methodology for designing
fault- tolerant VLSI processor arrays," Proceedings of the IEEE Symposium on Fault-Tolerant
Computing, June 1983, pp. 26-31.

[4] F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg, "Embedding graphs in books: a layout
problem with applications to VLSI design," MIT-VLSI Technical Memo, 1985.

[5] S. Even, Graph Algorithms, Computer Science Press, Rockville, Maryland, 1979.

[6] D. Fussell a·nd P. Yarman, "Fault-tolerant wafer-scale architectures for .. VLSI," Proceedings of
the 9th Annual IEEE/ACM Symposium on Computer Architecture, April 1982, pp. 190-198.

[7] J. W. Greene, Configuration of VLSI Arrays in the Presence of Defects, Ph.D. Dissertation,
Department of Electrical Engineering, Stanford University, December 1983.

[8] J. W. Greene and A. El Gama!, "Configuration of VLSI ar rays in the presence of defects,"
JACM, Vol. 31, No. 4, October 1984, pp. 694-717.

[9] K. Hedlund and L. Snyder, "Wafer-scale integration of configurable, highly parallel (CI-IiP)

processors," Proceedings of the IEEE International Conference on Parallel Processing, 1982,
pp. 262-264.

[10] A. ltai, C. H. Papadimitriou, and J . L. Szwarcfiter, "Hamiltonian paths in grid graphs,"
SIAM Journal of Computing, Vol. 11, No. 1, November 1982, pp. 67(i- (i86.

[1 t] I. Koren, "A reconfigurable and faulL-tolcranL VLSI rnulLiproccssor array," Proceedings of
the 8th Annual IEEE/ACM Symposium on Computer Architecture, May 1981, pp. 425 -131.

[12] H. T. Kung, "Why systolic architectures," Computer Magazine, IEEE, January 1982, pp.
37- 46.

[13] H. T . Kung and C. E. Leiserson, "Systolic arrays (for VLSI)," Sparse Matrix Proceedings
1978, edited by I. S. Duff and G. W . Stewart, Society for Industrial and Applied Mathematics,
pp. 256-'282.

[14] F . T. Leighton, Complexity Issues in YLSI: Optimal Layouts for the Shuifie-Exchange Graph
and Other Networks, MIT Press, 1983.

[15] F . T. Leighton, "New lower bound techniques for VLSI," Math. Systems Theory, Vol. 17,
No. 1, April 1984, pp. 47- 70.

Z3

· [16] F. T. Leighton, "A layout strategy for VLSI which is provably good," Proceedings of the
Fourteenth ACM Symposium on Theory of Computing, May 1982, pp. 85-98.

[17] F . T . Leighton and C. E. Leiserson, "Wafer-scale integration of systolic arrays," IEEE
Transactions on Computers, Vol. C-34, No. 5, May 1985, pp. 448-461.

[18] F. T. Leighton and A. L. Rosenberg, "Three-dimensional circuit layouts," SIAM Journal on
Computing, to appear.

[19] F . T. Leighton and P. W. Shor, "Tight bounds for grid matching with application to the
average-case analysis of algorithms," in preparation.

[20] C. E. Leiserson, Area-Efficient VLSI Computation, MIT Press, Cambridge, Massachusetts,
1983.

[21] J. Logue, W. Kleinfelder, P. Lowy,· J. Moulic, and W. Wu, "Techniques for improving
engineering productivity of VLSI designs," Proceedings of the IEEE International Conference
on Circuits and Computers, 1980.

[22] F. Manning, Automatic Test, Configuration, and Repair of Cellular Arrays, Ph.D. disserta
tion, MIT Project MAC, June 1975.

[23] F. Manning, "An approach to highly integrated, computer-maintained cellular arrays," IEEE
Transactions on Computers, Vol. c-26, June 1977.

[24] R . C. Prim, "Shortest connection networks and some generalizations," Bell System Tech. J.,
Vol. 36, 1957, pp. 1389-1401.

[25] J. I. Raff el, "On the use of nonvolatile program links for restructurable VLSI," Proceedings
of the Caltech Conference on VLSI, January 1979, pp. 95-104.

[26] A. L. Rosenberg, "Three-"dimensional integrated circuitry," Proceedings of the CMU Con
ference on VLSI Systems and Computations, edited by H. T. Kung, R. Sproull, and G.
Steele, OcLober 1981, pp. 69--80.

[27] A. L. Rosenberg, "The Diogenes approach to testable fault-tolerant networks of processors,"
Technical Report CS- 1982- 6.1, Department of Computer Science, Duke University, May
1982.

[28] A. L. Rosenberg, "On designing fault-tolerant arrays of processors," Duke University Tech
nical Report CS- 1982--14.

[29] M. Sckanina, "On an ordering of -the set of vertices of a connected graph," Publications of

the Faculty of Science, University Brno, Czechoslovakia, No. 412, 1960, pp. 137-142.

[30] P. W. Shor, Average-case analyses for bin packing and planar matching problems, Ph.D.
dissertation, Mathematics Department, MIT, 1985.

[31] C. D. Thompson, A Complexity Theory for VLSI, Ph.D. dissertation, Department of Com
puter Science, Carnegie-Mellon University, 1980.

2.4

