
To appear, 2023 24th Int’l Symp. on Quality Electronic Design (ISQED) https://doi.org/10.1109/ISQED57927.2023.10129290

Accounting for Floorplan Irregularity and
Configuration Dependence in FPGA Routing Delay

Models
Gabriel Barajas

Microchip
San Jose, California USA

gabriel.barajas@microchip.com

Jonathan W. Greene
Cambios Computing LLC
Palo Alto, California USA

jgreene@cambioscomputing.com

Fei Li
Microchip

San Jose, California USA
fei.li@microchip.com

James Tandon
California State University East Bay

Hayward, California USA
james.tandon@csueastbay.edu

Abstract—Accurate delay estimates for a user application
implemented in a Field-Programmable Gate Array (FPGA) are
essential for a quality FPGA timing flow and to avoid leaving
performance on the table. FPGA inter-cluster routing consists of
wire segments of a limited number of types which repeat in a
somewhat regular pattern, interconnected by configurable muxes.
The delay at any fanout of a segment can be significantly impacted
by configuration-dependent capacitive loading related to other
fanouts. Also, the insertion of RAM and math blocks into the
FPGA floorplan introduces irregular stretching of the wire
segments, altering their delays. We explain why and how
commercial FPGA software typically employs a parameterized
model for the delay at each fanout of a segment, based on the
configuration and the irregularities present, with the parameters
determined by fitting SPICE simulation data for a representative
sample of cases. We propose incorporating readily-computed
common path resistance values into the model. This enables high
accuracy with fewer parameters and without the large amounts of
SPICE data that would otherwise be required to explore
interactions between floorplan irregularities and the set of active
fanouts. In combination with other features of our models, errors
in segment delay are reduced by almost half.

Keywords— Field-programmable gate arrays, FPGAs, delay
estimation, Elmore delay, common path resistance

I. INTRODUCTION
Field-Programmable Gate Arrays (FPGAs) are a widely-

used form of programmable logic. A user application is
implemented in an FPGA by configuring programmable logic
blocks and routing switches or muxes. The user relies on FPGA
timing software to guarantee the implementation can be safely
clocked at the desired frequency, without risk of timing errors.
This requires getting conservative estimates of the propagation
delays through the FPGA circuitry as a function of the routing
configuration. But if the estimates are unduly conservative,
performance suffers. Thus, high-quality delay estimates are key.

In older FPGAs, the switches are implemented by NMOS
pass transistors or anti-fuses, and can be adequately modeled as
linear resistors. An RC tree may be constructed for each delay
stage based on the relevant active portions of the parasitic netlist
of the FPGA layout. (By active, we mean the portions reachable
through switches that the configuration turns on.) The estimated
delay to each active leaf (fanout) of the tree is then computed
using a first-order model such as Elmore delay [1]. VPR [2]
provides a widely-used example of this approach. Other, more

accurate higher-order alternatives such as AWE [3] can be used
instead of Elmore delay.

Since the advent of 0.13um technology brought a higher
ratio of threshold to operating voltage (VT/VDD), “direct-drive”
FPGA routing [4] is now preferred. In this style of routing there
are at most two or three levels of switches, and switches are
present only downstream of most of the wire capacitance, near
the leaves of the delay tree. As a result, the delays to the various
leaves of the tree become more similar to each other and less
dependent on which other leaves are active. (In the extreme, one
might be tempted to approximate the delays at all leaves with
the same single value, independent of the configuration.)

As process technology continues to advance, transistors can
no longer be approximated as linear resistors. The use of an
accurate but time-consuming circuit simulator such as SPICE
becomes necessary [5]. Nevertheless, we can still rapidly obtain
accurate delay estimates for each routed FPGA application as
follows:

1. Run SPICE simulation on a representative sample of
routing trees. The sample includes various types of trees
with various subsets of their leaves active. The simpler
nature of direct-drive architectures helps to limit the
number of samples required.

2. Fit some kind of regression model to that data.

3. Given a particular configuration, use the model to
estimate the delay to each active leaf of each tree.

The first two steps, especially SPICE simulation, can be very
time-consuming. But these only need to be done once for each
new FPGA architecture, not repeated during the analysis of each
application.

The regression model may be a table lookup, a concise linear
or non-linear equation, or some combination. Machine learning
has also been introduced for this purpose, either to get rough
delay estimates based on information available prior to routing
[6] or more accurate estimates after routing [7].

The regression models used to support commercial FPGAs
are typically proprietary. However, they are known to face two
challenges.

The first is fanout dependence. Although direct-drive
architectures reduce the fanout dependence of delays, they do
not eliminate it. In fact, fanout dependence becomes more

https://doi.org/10.1109/ISQED57927.2023.10129290

significant in FinFET technologies due to the increase in gate
capacitance relative to wire and junction capacitance [8]. For
best accuracy (to avoid unnecessary delay margin) the
regression model must depend on the quantity of active fanouts
and perhaps even the particular subset of fanouts that are active
(which we call configuration dependence).

The second challenge is irregularities in the FPGA’s
floorplan, which cause “discontinuities” [9] in delay as a
function of the length of the routing tree. If the floorplan of the
FPGA is a regular grid of identical logic tiles (also known as
clusters, LABs or CLBs), delays may increase smoothly with the
number of tiles spanned by a tree. At worst, the number of types
of trees which must be simulated is small due to various
symmetries. However modern large FPGAs are heterogeneous
and their grid is interrupted by the insertion or substitution of
other tiles such as math blocks, memory blocks, clock
distribution, etc. (See Fig. 1.) To avoid a combinatorial
explosion in the complexity of the model (and hence the number
of trees that must be simulated to determine its parameters), the
model may treat the irregularities as adjustments to the delay
value of an uninterrupted tree. (See, for example, [9].)

To make matters worse, these two challenges interact. That
is, the incremental delay at one fanout caused when activation
of another fanout adds capacitive loading will depend on what
irregularities are present and where.

Note that these difficulties are particular to the inter-tile
delays, making them especially problematic to model.
Unfortunately, inter-tile delays also comprise a significant
fraction of total critical path delay, about 45 per cent and often
more. So it is essential to model them accurately.

The goal of this paper is to find a way that regression models
can accurately estimate inter-tile routing delays in the presence
of both configuration dependence and floorplan irregularities
while remaining terse enough to be trained with limited SPICE
data and avoid over-fitting. To this end, we strive (for instance)
to avoid having any model parameter that is dependent on both
the configuration and the irregularities that are present. We show
that this goal can be accomplished using a novel semi-empirical
approach that combines parameter fitting with the Elmore delay
formula.

II. PROBLEM FORMULATION
We assume an FPGA is composed of instances of a limited

number of tiles, and that all connections between tile instances
are made by abutment.

A delay tree (or tree for short) is shown in Fig. 2. At the root
of the tree is a driver (buffer or logic cell), in this case shown
in the leftmost tile instance. Its output signal may propagate
through various muxes 𝑀! to various leaves (fanouts) 𝐿! in the
same or other tile instances. We assume any leaf downstream
of a mux must be in the same tile as the mux (in other words no
unbuffered signal can pass between tiles). The tree is
topological in the sense that the exact relative physical positions
of the tile instances are unspecified. The tree includes only
those tile instances that contain the driver, muxes or leaves, not
other tile instances through which the signal may need to pass
on its way.

Fig. 1. Examples of discontinuities in a heterogeneous FPGA array. Each
unlabeled blue tile contains logic and routing. A length one vertical connection
may get stretched across a clock stripe. A length two horizontal connection may
get stretched across math or RAM blocks. The stretch can occur at either the
first or second half of the connection and cross either the top or bottom of the
block.

Fig. 2. Example of a delay tree containing three tile instances. 𝐿! – 𝐿" are the
leaves that may be driven by the tree. 𝑀! – 𝑀# are the portions of single-stage
muxes driving 𝐿! – 𝐿#, respectively. 𝑀$ and 𝑀# are in turn driven by a single-
stage unbuffered mux 𝑀%. 𝑀" is the portion of a two-stage mux driving 𝐿".
Here we show switches as NMOS pass gates, but they can also be implemented
by CMOS transmission gates [10], flash memory switches [11], antifuses [12],
or anything similar that can be simulated by SPICE.

A configuration of a tree is specified by the subset of the
muxes in the tree whose relevant input is selected.

A polyomino is a contiguous set of tile instances of specified
types and at fixed relative positions. One of the tile instances is
distinguished as the driving tile instance. Fig. 3 shows some
example polyominos. Polyominos are the means by which we
capture the impact of floorplan irregularities on a tree. The
polyomino in which a tree is implemented determines which
tile implements each portion of the tree, and each tile has a
defined layout. Thus, the polyomino determines the complete,
detailed parasitic netlist of the tree, including any stretching of
wires over inserted tiles.

The independent variables available to our regression
models are as follows:

• 𝑇 is a tree.
• 𝑃 is a polyomino which contains an implementation of

the tree.
• 𝑀", 𝑀#, … are the set of muxes in the tree.
• 𝐿 is a leaf (fanout) of the tree whose delay is to be

estimated.
• 𝐹 is the signal transition: 1 if falling, 0 if rising.

m
at

h

RA
M

m
at

h

RA
M

clock

m
at

h

RA
M

M6

M2

M5

L6

L2

L5

M7 L4

M4

M3

L3

M1

L1

driver tile receiver tile 1 receiver tile 2

• 𝑅(𝑃,𝑀, 𝐿) is the resistance of the common portion of
the paths to mux 𝑀 and leaf 𝐿 through tree 𝑇
implemented in polyomino 𝑃.

• 𝑋(𝑀) is 1 if mux 𝑀 is active, or 0 otherwise.
• 𝐶 = {𝑀!: 𝑋(𝑀!) = 1} is the set of active muxes in the

tree (i.e., its configuration).
The dependent variable to be estimated is 𝐷(𝑃, 𝐿, 𝐹, 𝐶), the

delay through tree 𝑇 implemented in polyomino 𝑃 from the
input of the driver to leaf 𝐿 with signal transition 𝐹 when the
tree’s muxes are in configuration 𝐶.

The concept of common path resistance 𝑅(𝑃,𝑀, 𝐿) may
require some further explanation. Fig. 4 shows an example. The
𝑅 values can be determined in a straightforward way by tracing
paths through the netlists (including layout parasitics) of the
tiles in the relevant polyomino 𝑃 . (There is no need to run
SPICE for this purpose.) The resistance values are independent
of the particular user application, and thus may be tabulated
once offline and used repeatedly for any application.

III. METHODS
Recall that our goal is to find a good model for inter-tile

delays in FPGAs, which (as explained in Section 1) are
particularly difficult to estimate, yet account for almost half of
total critical path delay. We propose a variety of such models
and evaluate their relative merits in a simple and direct manner
by determining how closely they can reproduce the
corresponding SPICE delays.

Fig. 3. Four examples of polyominos which may implement the tree of Figure
2. Each polyomino consists of a set of contiguous tile instances of specified
types at specified relative positions. One logic/routing tile in each polyomino is
distinguished as the driving tile (indicated here by the buffer symbol).
Polyominos (a) and (b) differ because in (b) the wiring of the tree is stretched
across the math block. Polyominos (c) and (d) differ because the wiring across
the top of the math block may have different parasitics than wiring across the
bottom.

Fig. 4. The portion of a tree driving leaves 𝐿& and 𝐿' in a polyomino 𝑃 of four
tiles. The common path resistance 𝑅%𝑃,𝑀& , 𝐿'' = 𝑅%𝑃,𝑀' , 𝐿&' = 𝑅1 + 𝑅2.

A. Models
We consider the following alternative models for estimating

𝐷(𝑃, 𝐿, 𝐹, 𝐶) for a given tree 𝑇. The models contain parameters
𝐵 and 𝐾 having various dependencies. The 𝐵 parameters are
“baseline” values independent of fanout. The 𝐾 parameters
reflect the fanout- or configuration-dependent portion of the
delay.

𝐵(𝑃, 𝐿, 𝐹) (1)

𝐵(𝑃, 𝐿, 𝐹) + 	𝐾(𝐹)	∑ 𝑋(𝑀)$ (2)

𝐵(𝑃, 𝐿, 𝐹) +	∑ 𝐾(𝑀, 𝐹)	𝑋(𝑀)$ (3)

𝐵(𝑃, 𝐿, 𝐹) +	∑ 𝐾(𝑀, 𝐿, 𝐹)	𝑋(𝑀)$ (4)

𝐵(𝑃, 𝐿, 𝐹) + 	𝐾(𝐹)∑ 𝑅(𝑃,𝑀, 𝐿)	𝑋(𝑀)$ (5)

𝐵(𝑃, 𝐿, 𝐹) +	∑ 𝐾(𝑀, 𝐹)	𝑅(𝑃,𝑀, 𝐿)	𝑋(𝑀)$ (6)

𝐵(𝑃, 𝐿, 𝐹) +	∑ 𝐾(𝑀, 𝐿, 𝐹)	𝑅(𝑃,𝑀, 𝐿)	𝑋(𝑀)$ (7)

(All parameters also have an implied dependence on the tree 𝑇,
not shown above.)

Equation (1) is a fanout-independent model. In all other
cases the summation is over those muxes 𝑀 which need not be
active to reach 𝐿 but would (if active) add incremental
capacitive loading on the path to 𝐿.

Equations (2), (3) and (4) add fanout dependence in
increasingly expressive ways. Equation (2) depends on the
number of active fanouts, while equations (3) and (4) depend
on the particular set of active fanouts. In equation (3), the
impact of activating mux 𝑀 is independent of 𝐿, the leaf whose
delay we are estimating; in equation (4), the impact may differ
for each 𝐿.

Equations (5)-(7) are similar to equations (2)-(4),
respectively, but include the novel common path resistance
term that is a key contribution of this paper. The inspiration for
introducing common path resistance into the models in this way
is the role it plays in the Elmore delay formula. In the Elmore
formula, the contribution to the delay at a leaf 𝐿 from a
capacitive load 𝐶 is proportional to 𝑅𝐶 , where 𝑅 is the
resistance of the common portion of the paths to 𝐿 and 𝐶 .
Observe that in equations (5)-(7), 𝐾 • 𝑋 plays the role of the
capacitive load downstream of mux 𝑀.

Note that our 𝐵(𝑃, 𝐿, 𝐹) parameters depend on both the
polyomino 𝑃 (reflecting any layout irregularities) and leaf 𝐿
(the leaf for which we are estimating delay). This differs from
most previous work (such as [9]). So we also consider
restrictions of the above models which split these impacts into
two separate additive terms:

𝐵(𝑃, 𝐿, 𝐹) = 	𝐵%(𝐿, 𝐹) +	𝐵&(𝑃, 𝐹) (8)
We also consider simplifications of the above models that

eliminate the dependence of the 𝐾 parameters on the transition,
𝐹.

B. Data
Transistor-level netlists were extracted for each tile type of

a prototype commercial FPGA architecture targeting an

m
at
h

m
at
h m
at
h

(a) (b)

(c) (d)

Li

Lj

R1 R4

R3

R2 R5 Mi

Mj

advanced CMOS process representative of the challenges
explained in Section 1.

We selected ten example delay trees, covering inter-tile
segments of every length present in the architecture:

• An L1 segment driven by a mux in one tile that drives
muxes in the same tile and one of the four immediately
adjacent tiles.

• An L2 segment that drives muxes in the tiles at distance
1 and 2, either vertically or horizontally.

• An L4 segment that drives muxes 4 tiles away, either
vertically or horizontally.

• An LL segment that drives muxes a long distance away,
either vertically or horizontally.

The L2 segments are especially interesting because they
have fanouts at an intermediate position (distance 1), and
stretching can occur either upstream or downstream of these.

For a tree having 𝑁 possible fanouts, we further selected: all
configurations with one or two active fanouts; up to 10
configurations with each number of active fanouts from three
through 𝑁 − 1; and the one configuration with all 𝑁 fanouts
active. This gives us a set of [𝑇, 𝐶] pairs.

For each such pair, we selected a polyomino from the set of
applicable polyominos in a randomized round-robin way so
every possible polyomino is used at least once. The set of
applicable polyominos provide considerable variation in
physical segment length due to array irregularities. The
polyominos also vary the position along the segment at which
stretching occurs, relative to the driving and receiving tiles.
This gives us a set of [𝑇, 𝑃, 𝐶] triples.

For each such triple, we performed a SPICE simulation to
get the delay to each leaf active under the configuration 𝐶 for
both rising and falling transitions. The same upstage driver was
used for all triples involving the same tree to control for any
dependence on the transition time of the upstream stage.

Overall, the data includes a total of 43,000 SPICE delay
measurements involving 1,731 distinct polyominos.

C. Fitting Procedure
The typical way to determine parameters for a linear model

is to use least-squares regression. However, in the present case,
where we expect errors in the delays from SPICE (i.e.,
differences between SPICE and silicon) to be relatively small
compared to model fitting errors, it is more appropriate to
minimize the worst-case absolute value of the errors [13]. This
quantity, also known as the L∞ norm, can be readily minimized
by linear programming. It also may be more indicative of
guarantees we wish to make to users about their applications’
worst-case timing. Finally, this process also yields parameters
that are less sensitive to the exact distribution of training data
(i.e., overrepresentation of one type of data point versus others).

A much smaller cost is also imposed on the sum of the
absolute value of the errors to break ties, and also on the sum
of the 𝐾 parameters to reduce overfitting.

D. Evaluation Method
We first evaluate the expressiveness of each model by doing

a fit to all the data and reporting the number of 𝐾 parameters

employed and the maximum error obtained. (We focus on the
𝐾 parameters because they seem to be more prone to
overfitting.)

Then we did 30 trials of cross validation. Training sets were
selected as follows. We begin by identifying all the [𝑇, 𝑃, 𝐶]
triples for which delays are available. Then for each trial, we
select a randomized subset of these triples subject to the
constraint that it provides sufficient delay data to determine all
parameters. For example, for each [𝑇, 𝑃, 𝐿, 𝐹] tuple, the training
set must include at least one tuple [𝑇, 𝑃, 𝐶] where 𝐶 activates 𝐿.
Otherwise, 𝐵(𝑃, 𝐿, 𝐹) will be indeterminate. (For further
details, see the Appendix.) We make no claim that this method
of selecting training sets is especially good. It is merely a
reasonable method we can use to evaluate the relative
predictiveness of the models.

The resulting training sets each cover approximately ¾ of
the delay values. We train each model using the delay data
covered by the training set, and predict the remaining ¼ of the
delay values.

IV. RESULTS
We observed that eliminating the dependence of the 𝐾

parameters on the transition 𝐹 (fall/rise) did not significantly
degrade either the expressiveness or cross validation results.
From here on, we assume that dependence is eliminated,
halving the number of 𝐾 parameters.

Table I shows the results. The metrics have these meanings:
• FittingErr: the maximum absolute value of the errors

when fitting the model to all available data.
• AvgErr: the average absolute value of the error on the

validation set.
• AvgRelErr: the average of the absolute value of the

error divided by the correct (SPICE) delay on the
validation set, expressed as a percentage.

• RMSErr: the root-mean-square error on the validation
set.

• MinErr, MaxErr: the range of errors on the validation
set.

All metrics (except for AvgRelErr) are normalized so the worst
FittingErr is 25.

We use AvgErr as the primary means of ranking the models;
the other metrics are just for further information.

The results indicate that the model of row 13 is the most
accurate. It uses the novel common path resistance terms and
merged 𝐵 parameters. AvgErr is reduced by 46% and MaxErr
by 73% compared to the best model without these techniques
(in row 2). We attempt to elucidate why by examining the data
more closely.

Rows 1 and 8 are fanout-independent models. These have
the worst errors, both in fitting and cross validation. The other
rows show fanout-dependent models of increasing complexity.
These have parameters 𝐾 dependent on: only the tree (10
constants 𝐾, one per tree); which mux is adding loading (114
parameters 𝐾(𝑀)); or on both the mux and which leaf’s delay
is being estimated (1336 parameters 𝐾(𝑀, 𝐿)).

TABLE I. RESULTS

Row Type
of B

Params

Includes
Common
Path R?

Number
of K

Params

Model Fitting
Err

Cross Validation
Avg
Err

Avg
Rel Err

(%)

RMS
Err

Min
Err

Max
Err

1 split no 0 𝐵%(𝐿, 𝐹) +	𝐵&(𝑃, 𝐹) 25.00 14.03 16.3 16.9 -44.4 15.7
2 split no 10 𝐵%(𝐿, 𝐹) +	𝐵&(𝑃, 𝐹)

+ 	𝐾	Σ	𝑋(𝑀)
18.00 3.62 4.8 6.4 -22.9 35.4

3 split no 114 𝐵%(𝐿, 𝐹) +	𝐵&(𝑃, 𝐹)
+ Σ	𝐾(𝑀)𝑋(𝑀)

16.78 3.91 5.2 6.8 -24.5 38.2

4 split no 1336 𝐵%(𝐿, 𝐹) +	𝐵&(𝑃, 𝐹)
+ Σ	𝐾(𝑀, 𝐿)𝑋(𝑀)

12.12 12.53 14.8 16.8 -38.3 78.3

5 split yes 10 𝐵%(𝐿, 𝐹) +	𝐵&(𝑃, 𝐹)
+ 	𝐾	Σ	𝑅(𝑃,𝑀, 𝐿)𝑋(𝑀)

12.90 3.62 4.7 6.5 -20.7 27.4

6 split yes 114 𝐵%(𝐿, 𝐹) +	𝐵&(𝑃, 𝐹)
+ Σ	𝐾(𝑀)𝑅(𝑃,𝑀, 𝐿)𝑋(𝑀)

9.24 4.89 6.3 10.0 -32.0 52.8

7 split yes 1336 𝐵%(𝐿, 𝐹) +	𝐵&(𝑃, 𝐹)
+ Σ	𝐾(𝑀, 𝐿)𝑅(𝑃,𝑀, 𝐿)𝑋(𝑀)

8.67 7.53 9.0 15.6 -35.8 105.7

8 merged no 0 𝐵(𝑃, 𝐿, 𝐹) 23.57 13.69 15.7 16.6 -48.2 9.0
9 merged no 10 𝐵(𝑃, 𝐿, 𝐹) + 	𝐾	Σ	𝑋(𝑀) 11.37 5.25 6.4 6.7 -18.1 31.8

10 merged no 114 𝐵(𝑃, 𝐿, 𝐹) + Σ	𝐾(𝑀)𝑋(𝑀) 10.16 3.09 4.2 5.4 -19.4 29.1
11 merged no 1336 𝐵(𝑃, 𝐿, 𝐹)

+ Σ	𝐾(𝑀, 𝐿)𝑋(𝑀)
6.65 5.75 6.5 7.6 -29.1 21.5

12 merged yes 10 𝐵(𝑃, 𝐿, 𝐹)
+ 	𝐾	Σ	𝑅(𝑃,𝑀, 𝐿)𝑋(𝑀)

9.20 6.58 8.4 8.3 -23.9 3.3

13 merged yes 114 𝐵(𝑃, 𝐿, 𝐹)
+ Σ	𝐾(𝑀)𝑅(𝑃,𝑀, 𝐿)𝑋(𝑀)

5.38 1.95 2.8 3.2 -12.6 9.4

14 merged yes 1336 𝐵(𝑃, 𝐿, 𝐹)
+ Σ	𝐾(𝑀, 𝐿)𝑅(𝑃,𝑀, 𝐿)𝑋(𝑀)

3.79 1.99 2.8 3.4 -16.4 24.9

Looking at rows 1-4 (for split 𝐵) or 8-11 (for merged 𝐵) we
see a clear trend that the more 𝐾 parameters, the lower the
training error (FittingErr). This confirms the importance of
configuration dependence. However, by the time we reach 1336
parameters, the cross-validated error (AvgErr) goes back up,
evidence that overfitting has started to occur.

This is where using common path resistance can help.
Comparing row 13 to row 11, we see that adding common path
resistance enables us to reduce the number of 𝐾 variables by
more than 10x while avoiding overfitting and reducing errors.

Now we turn to the benefits of the merged 𝐵 parameters.
Comparing row 1 to row 8, we see that for fanout-independent
models the conventional split 𝐵 parameters do nearly as well.
However, for higher-accuracy fanout-dependent models with
114 or more 𝐾 parameters, the use of the merged 𝐵 parameter
is indeed beneficial. This can be seen by comparing row 13 to
row 6, or row 10 to row 3. We surmise that if the model lacks
𝐾 parameters and their ability to accurately capture fanout-
dependence, the power of the merged 𝐵 parameters is misused
to overfit the fanout dependence.

Unfortunately, it is difficult to compare our results directly
to previous commercial FPGA delay models since those are
proprietary. We believe they are most similar to the models of

rows 2 and 3. An open-source model for a commercial FPGA
is described in [9], but it is just a lightweight model intended
for use in timing-driven place and route. It is fanout-
independent and has a separate additive term for floorplan
irregularities, similar to our row 1. It was evaluated only against
estimates from the proprietary FPGA software, which in turn
are an approximation to SPICE.

V. CONCLUSIONS
Accurate estimates for FPGA routing delay are essential for

a high-quality design flow. However, estimating delays for
inter-tile routing in FPGAs is particularly difficult due to the
combined effects of fanout-dependence and floorplan
irregularities. We proposed and evaluated a number of
regression models to predict such delays as a function of the
routing tree topology, the set of active fanouts (or
configuration), and the relevant layout tiles. We showed:

• Models must depend on the configuration in order to
achieve acceptable accuracy.

• For the best accuracy, models must account for
interactions between the configuration and floorplan
irregularities. Incorporation of common path resistance
into a model is a novel and effective way to accomplish

this without unduly increasing model complexity. In
particular, it is not necessary to have any parameter
(which must be determined from SPICE data) depend
on both the configuration and the floorplan
irregularities. This helps limit the amount of SPICE
data necessary to determine the model parameters.

• With the more accurate configuration-dependent
models, it is beneficial to allow for layout irregularities
having different impacts at different fanouts. We
showed this can be done effectively using our merged
𝐵 parameters.

APPENDIX: TRAINING SET SELECTION ALGORITHM
In the explanation below, 𝐿(𝑀) refers to the leaf driven

directly by mux 𝑀.
We pick a training set for each tree 𝑇 as follows. Begin by

sorting the list of all [𝑇, 𝑃, 𝐶] triples for which we have SPICE
data into a random order. Then pass through the list, selecting a
triple for inclusion in the training set if and only if it meets any
of these criteria:

• ∃𝑀 ∈ 𝐶 such that we have not yet selected a triple
[𝑇, 𝑃, 𝐶'] where 𝑀 ∈ 𝐶′ (Needed to estimate
𝐵(𝑃, 𝐿(𝑀), 𝐹).)

• ∃𝑀", 𝑀# ∈ 𝐶 such that we have not yet selected a triple
[𝑇, 𝑃′, 𝐶'] where 𝑀", 𝑀# ∈ 𝐶′ . (Needed to estimate
impact of turning on one mux on the delay at the leaf
driven by the other, and hence estimate 𝐾(𝑀", 𝐿(𝑀#))
and 𝐾(𝑀#, 𝐿(𝑀")).

• ‖𝐶‖ > 1 and ∃𝑀" ∈ 𝐶 and 𝑀# ∉ 𝐶 such that we have
not yet selected a triple [𝑇, 𝑃′, 𝐶'] where ‖𝐶′‖ > 1 and
‖𝐶′ ∩ {𝑀", 𝑀#}‖ = 1. (Needed to distinguish impact of
turning on 𝑀" versus 𝑀# on delay at some other leaf,
and hence assign unique values to 𝐾(𝑀") and 𝐾(𝑀#).)

• ∃𝑀 ∉ 𝐶 such that we have not yet selected a triple
[𝑇, 𝑃′, 𝐶'] where 𝑀 ∉ 𝐶′. (Needed to estimate impact of
not turning on M on the delay to some other leaf, and
hence estimate 𝐾(𝑀).)

ACKNOWLEDGMENTS
The authors thank Nizar Abdallah, Hassan Hassan and

Volker Hecht for their suggestions. Matthew Kelly and Tony
Liao contributed to the infrastructure used in this project.

REFERENCES
[1] W. Elmore, “The transient response of damped linear networks with

particular regard to wideband amplifiers,” Journal of Applied Physics,
19(1), pp. 55-63, 1948. https://doi.org/10.1063/1.1697872

[2] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
submicron FPGAs. Norwell, MA: Kluwer Academic Publishers, 1999.

[3] L. Pillage and R. Rohrer, “Asymptotic waveform evaluation for timing
analysis,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 9(4), pp. 352-366, 1990.
https://doi.org/10.1109/43.45867

[4] D. Lewis, V. Betz, D. Jefferson, A. Lee, C. Lane, P. Leventis, S.
Marquardt, C. McClintock, B. Pedersen, G. Powell, S. Reddy, C.
Wysocki, R. Cliff, and J. Rose, “The Stratix routing and logic
architecture,” Proceedings of the ACM/SIGDA Eleventh International
Symposium on Field Programmable Gate Arrays (FPGA), pp. 12-20,
2003. https://doi.org/10.1145/611817.611821

[5] C. Chiasson and V. Betz, “COFFE: fully-automated transistor sizing for
FPGAs,” International Conference on Field-Programmable Technology
(FPT), pp. 34-41, 2013. https://doi.org/10.1109/FPT.2013.6718327

[6] T. Martin, G. Gréwal, and S. Areibi, “A machine learning approach to
predict timing delays during FPGA placement,” IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pp. 124-127, 2021. https://doi.org/10.1109/IPDPSW52791.2021.00026

[7] M. Raman, N. Abdallah, and J. Dunoyer, “An artificial intelligence
approach to EDA software testing: application to net delay algorithms in
FPGAs,” 20th International Symposium on Quality Electronic Design
(ISQED), pp. 311-316, 2019.
https://doi.org/10.1109/ISQED.2019.8697652

[8] M. Guillorn, et al., “FinFET performance advantage at 22nm: an AC
perspective,” IEEE Symposium on VLSI Technology, pp. 12-13, 2008.
https://doi.org/10.1109/VLSIT.2008.4588544

[9] P. Maidee, C. Neely, A. Kaviani and C. Lavin, “An open-source
lightweight timing model for RapidWright,” International Conference on
Field-Programmable Technology (FPT), pp. 171-178, 2019.
https://doi.org/10.1109/ICFPT47387.2019.00028

[10] C. Chiasson and V. Betz, "Should FPGAs abandon the pass-gate?," 23rd
International Conference on Field programmable Logic and Applications
(FPL), pp. 1-8, 2013. https://doi.org/10.1109/FPL.2013.6645511

[11] J. Greene, S. Kaptanoglu, W. Feng, V. Hecht, J. Landry, F. Li, A.
Krouglyanskiy, M. Morosan and V. Pevzner, “A 65nm flash-based FPGA
fabric optimized for low cost and power,” Proceedings of the 19th
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA), pp. 87-96, 2001.
https://doi.org/10.1145/1950413.1950434

[12] J. Greene, E. Hamdy and S. Beal, “Antifuse field programmable gate
arrays,” Proceedings of the IEEE, 81(7), pp. 1042-1056, 1993.
https://doi.org/10.1109/5.231343

[13] R. Shrager, E. Hill, “Nonlinear curve-fitting in the 𝐿₁ and L∞ norms,”
Mathematics of Computation, 34(150), pp. 529-541, 1980.
https://doi.org/10.1090/S0025-5718-1980-0559201-X

