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Abstract—Accurate delay estimates for a user application 
implemented in a Field-Programmable Gate Array (FPGA) are 
essential for a quality FPGA timing flow and to avoid leaving 
performance on the table. FPGA inter-cluster routing consists of 
wire segments of a limited number of types which repeat in a 
somewhat regular pattern, interconnected by configurable muxes. 
The delay at any fanout of a segment can be significantly impacted 
by configuration-dependent capacitive loading related to other 
fanouts. Also, the insertion of RAM and math blocks into the 
FPGA floorplan introduces irregular stretching of the wire 
segments, altering their delays. We explain why and how 
commercial FPGA software typically employs a parameterized 
model for the delay at each fanout of a segment, based on the 
configuration and the irregularities present, with the parameters 
determined by fitting SPICE simulation data for a representative 
sample of cases. We propose incorporating readily-computed 
common path resistance values into the model. This enables high 
accuracy with fewer parameters and without the large amounts of 
SPICE data that would otherwise be required to explore 
interactions between floorplan irregularities and the set of active 
fanouts. In combination with other features of our models, errors 
in segment delay are reduced by almost half. 

Keywords— Field-programmable gate arrays, FPGAs, delay 
estimation, Elmore delay, common path resistance 

I. INTRODUCTION 
Field-Programmable Gate Arrays (FPGAs) are a widely-

used form of programmable logic. A user application is 
implemented in an FPGA by configuring programmable logic 
blocks and routing switches or muxes. The user relies on FPGA 
timing software to guarantee the implementation can be safely 
clocked at the desired frequency, without risk of timing errors. 
This requires getting conservative estimates of the propagation 
delays through the FPGA circuitry as a function of the routing 
configuration. But if the estimates are unduly conservative, 
performance suffers. Thus, high-quality delay estimates are key. 

In older FPGAs, the switches are implemented by NMOS 
pass transistors or anti-fuses, and can be adequately modeled as 
linear resistors. An RC tree may be constructed for each delay 
stage based on the relevant active portions of the parasitic netlist 
of the FPGA layout. (By active, we mean the portions reachable 
through switches that the configuration turns on.) The estimated 
delay to each active leaf (fanout) of the tree is then computed 
using a first-order model such as Elmore delay [1]. VPR [2] 
provides a widely-used example of this approach. Other, more 

accurate higher-order alternatives such as AWE [3] can be used 
instead of Elmore delay. 

Since the advent of 0.13um technology brought a higher 
ratio of threshold to operating voltage (VT/VDD), “direct-drive” 
FPGA routing [4] is now preferred.  In this style of routing there 
are at most two or three levels of switches, and switches are 
present only downstream of most of the wire capacitance, near 
the leaves of the delay tree. As a result, the delays to the various 
leaves of the tree become more similar to each other and less 
dependent on which other leaves are active. (In the extreme, one 
might be tempted to approximate the delays at all leaves with 
the same single value, independent of the configuration.) 

As process technology continues to advance, transistors can 
no longer be approximated as linear resistors. The use of an 
accurate but time-consuming circuit simulator such as SPICE 
becomes necessary [5]. Nevertheless, we can still rapidly obtain 
accurate delay estimates for each routed FPGA application as 
follows: 

1. Run SPICE simulation on a representative sample of 
routing trees. The sample includes various types of trees 
with various subsets of their leaves active. The simpler 
nature of direct-drive architectures helps to limit the 
number of samples required. 

2. Fit some kind of regression model to that data.  

3. Given a particular configuration, use the model to 
estimate the delay to each active leaf of each tree. 

The first two steps, especially SPICE simulation, can be very 
time-consuming. But these only need to be done once for each 
new FPGA architecture, not repeated during the analysis of each 
application. 

The regression model may be a table lookup, a concise linear 
or non-linear equation, or some combination. Machine learning 
has also been introduced for this purpose, either to get rough 
delay estimates based on information available prior to routing 
[6] or more accurate estimates after routing [7].  

The regression models used to support commercial FPGAs 
are typically proprietary. However, they are known to face two 
challenges. 

The first is fanout dependence. Although direct-drive 
architectures reduce the fanout dependence of delays, they do 
not eliminate it. In fact, fanout dependence becomes more 
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significant in FinFET technologies due to the increase in gate 
capacitance relative to wire and junction capacitance [8]. For 
best accuracy (to avoid unnecessary delay margin) the 
regression model must depend on the quantity of active fanouts 
and perhaps even the particular subset of fanouts that are active 
(which we call configuration dependence). 

The second challenge is irregularities in the FPGA’s 
floorplan, which cause “discontinuities” [9] in delay as a 
function of the length of the routing tree. If the floorplan of the 
FPGA is a regular grid of identical logic tiles (also known as 
clusters, LABs or CLBs), delays may increase smoothly with the 
number of tiles spanned by a tree. At worst, the number of types 
of trees which must be simulated is small due to various 
symmetries. However modern large FPGAs are heterogeneous 
and their grid is interrupted by the insertion or substitution of 
other tiles such as math blocks, memory blocks, clock 
distribution, etc. (See Fig. 1.) To avoid a combinatorial 
explosion in the complexity of the model (and hence the number 
of trees that must be simulated to determine its parameters), the 
model may treat the irregularities as adjustments to the delay 
value of an uninterrupted tree. (See, for example, [9].) 

To make matters worse, these two challenges interact. That 
is, the incremental delay at one fanout caused when activation 
of another fanout adds capacitive loading will depend on what 
irregularities are present and where. 

Note that these difficulties are particular to the inter-tile 
delays, making them especially problematic to model. 
Unfortunately, inter-tile delays also comprise a significant 
fraction of total critical path delay, about 45 per cent and often 
more. So it is essential to model them accurately. 

The goal of this paper is to find a way that regression models 
can accurately estimate inter-tile routing delays in the presence 
of both configuration dependence and floorplan irregularities 
while remaining terse enough to be trained with limited SPICE 
data and avoid over-fitting. To this end, we strive (for instance) 
to avoid having any model parameter that is dependent on both 
the configuration and the irregularities that are present. We show 
that this goal can be accomplished using a novel semi-empirical 
approach that combines parameter fitting with the Elmore delay 
formula. 

II. PROBLEM FORMULATION 
We assume an FPGA is composed of instances of a limited 

number of tiles, and that all connections between tile instances 
are made by abutment. 

A delay tree (or tree for short) is shown in Fig. 2. At the root 
of the tree is a driver (buffer or logic cell), in this case shown 
in the leftmost tile instance. Its output signal may propagate 
through various muxes 𝑀! to various leaves (fanouts) 𝐿! in the 
same or other tile instances. We assume any leaf downstream 
of a mux must be in the same tile as the mux (in other words no 
unbuffered signal can pass between tiles). The tree is 
topological in the sense that the exact relative physical positions 
of the tile instances are unspecified. The tree includes only 
those tile instances that contain the driver, muxes or leaves, not 
other tile instances through which the signal may need to pass 
on its way. 

 
Fig. 1. Examples of discontinuities in a heterogeneous FPGA array. Each 
unlabeled blue tile contains logic and routing. A length one vertical connection 
may get stretched across a clock stripe. A length two horizontal connection may 
get stretched across math or RAM blocks. The stretch can occur at either the 
first or second half of the connection and cross either the top or bottom of the 
block. 

 
Fig. 2. Example of a delay tree containing three tile instances. 𝐿! – 𝐿" are the 
leaves that may be driven by the tree. 𝑀! – 𝑀# are the portions of single-stage 
muxes driving 𝐿! – 𝐿#, respectively. 𝑀$ and 𝑀# are in turn driven by a single-
stage unbuffered mux 𝑀%. 𝑀" is the portion of a two-stage mux driving 𝐿". 
Here we show switches as NMOS pass gates, but they can also be implemented 
by CMOS transmission gates [10], flash memory switches [11], antifuses [12], 
or anything similar that can be simulated by SPICE. 

A configuration of a tree is specified by the subset of the 
muxes in the tree whose relevant input is selected. 

A polyomino is a contiguous set of tile instances of specified 
types and at fixed relative positions. One of the tile instances is 
distinguished as the driving tile instance. Fig. 3 shows some 
example polyominos. Polyominos are the means by which we 
capture the impact of floorplan irregularities on a tree. The 
polyomino in which a tree is implemented determines which 
tile implements each portion of the tree, and each tile has a 
defined layout. Thus, the polyomino determines the complete, 
detailed parasitic netlist of the tree, including any stretching of 
wires over inserted tiles. 

The independent variables available to our regression 
models are as follows: 

• 𝑇 is a tree. 
• 𝑃 is a polyomino which contains an implementation of 

the tree. 
• 𝑀", 𝑀#, … are the set of muxes in the tree. 
• 𝐿 is a leaf (fanout) of the tree whose delay is to be 

estimated. 
• 𝐹 is the signal transition: 1 if falling, 0 if rising. 
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• 𝑅(𝑃,𝑀, 𝐿) is the resistance of the common portion of 
the paths to mux 𝑀  and leaf 𝐿  through tree 𝑇 
implemented in polyomino 𝑃. 

• 𝑋(𝑀) is 1 if mux 𝑀 is active, or 0 otherwise. 
• 𝐶 = {𝑀!: 𝑋(𝑀!) = 1} is the set of active muxes in the 

tree (i.e., its configuration). 
The dependent variable to be estimated is 𝐷(𝑃, 𝐿, 𝐹, 𝐶), the 

delay through tree 𝑇  implemented in polyomino 𝑃  from the 
input of the driver to leaf 𝐿 with signal transition 𝐹 when the 
tree’s muxes are in configuration 𝐶. 

The concept of common path resistance 𝑅(𝑃,𝑀, 𝐿)  may 
require some further explanation. Fig. 4 shows an example. The 
𝑅 values can be determined in a straightforward way by tracing 
paths through the netlists (including layout parasitics) of the 
tiles in the relevant polyomino 𝑃 . (There is no need to run 
SPICE for this purpose.) The resistance values are independent 
of the particular user application, and thus may be tabulated 
once offline and used repeatedly for any application.  

III. METHODS 
Recall that our goal is to find a good model for inter-tile 

delays in FPGAs, which (as explained in Section 1) are 
particularly difficult to estimate, yet account for almost half of 
total critical path delay. We propose a variety of such models 
and evaluate their relative merits in a simple and direct manner 
by determining how closely they can reproduce the 
corresponding SPICE delays. 

 

 
Fig. 3. Four examples of polyominos which may implement the tree of Figure 
2. Each polyomino consists of a set of contiguous tile instances of specified 
types at specified relative positions. One logic/routing tile in each polyomino is 
distinguished as the driving tile (indicated here by the buffer symbol). 
Polyominos (a) and (b) differ because in (b) the wiring of the tree is stretched 
across the math block. Polyominos (c) and (d) differ because the wiring across 
the top of the math block may have different parasitics than wiring across the 
bottom. 

 
Fig. 4. The portion of a tree driving leaves 𝐿& and 𝐿' in a polyomino 𝑃 of four 
tiles. The common path resistance   𝑅%𝑃,𝑀& , 𝐿'' = 𝑅%𝑃,𝑀' , 𝐿&' = 𝑅1 + 𝑅2. 

A. Models 
We consider the following alternative models for estimating 

𝐷(𝑃, 𝐿, 𝐹, 𝐶) for a given tree 𝑇. The models contain parameters 
𝐵 and 𝐾  having various dependencies. The 𝐵 parameters are 
“baseline” values independent of fanout. The 𝐾  parameters 
reflect the fanout- or configuration-dependent portion of the 
delay. 

𝐵(𝑃, 𝐿, 𝐹)                                     (1) 

𝐵(𝑃, 𝐿, 𝐹) + 	𝐾(𝐹)	∑ 𝑋(𝑀)$                      (2) 

𝐵(𝑃, 𝐿, 𝐹) +	∑ 𝐾(𝑀, 𝐹)	𝑋(𝑀)$                      (3) 

𝐵(𝑃, 𝐿, 𝐹) +	∑ 𝐾(𝑀, 𝐿, 𝐹)	𝑋(𝑀)$                    (4) 

𝐵(𝑃, 𝐿, 𝐹) + 	𝐾(𝐹)∑ 𝑅(𝑃,𝑀, 𝐿)	𝑋(𝑀)$               (5) 

𝐵(𝑃, 𝐿, 𝐹) +	∑ 𝐾(𝑀, 𝐹)	𝑅(𝑃,𝑀, 𝐿)	𝑋(𝑀)$             (6) 

𝐵(𝑃, 𝐿, 𝐹) +	∑ 𝐾(𝑀, 𝐿, 𝐹)	𝑅(𝑃,𝑀, 𝐿)	𝑋(𝑀)$           (7) 

(All parameters also have an implied dependence on the tree 𝑇, 
not shown above.)  

Equation (1) is a fanout-independent model. In all other 
cases the summation is over those muxes 𝑀 which need not be 
active to reach 𝐿  but would (if active) add incremental 
capacitive loading on the path to 𝐿. 

Equations (2), (3) and (4) add fanout dependence in 
increasingly expressive ways. Equation (2) depends on the 
number of active fanouts, while equations (3) and (4) depend 
on the particular set of active fanouts. In equation (3), the 
impact of activating mux 𝑀 is independent of 𝐿, the leaf whose 
delay we are estimating; in equation (4), the impact may differ 
for each 𝐿. 

Equations (5)-(7) are similar to equations (2)-(4), 
respectively, but include the novel common path resistance 
term that is a key contribution of this paper. The inspiration for 
introducing common path resistance into the models in this way 
is the role it plays in the Elmore delay formula. In the Elmore 
formula, the contribution to the delay at a leaf 𝐿  from a 
capacitive load 𝐶  is proportional to 𝑅𝐶 , where 𝑅  is the 
resistance of the common portion of the paths to 𝐿  and 𝐶 . 
Observe that in equations (5)-(7), 𝐾 • 𝑋 plays the role of the 
capacitive load downstream of mux 𝑀. 

Note that our 𝐵(𝑃, 𝐿, 𝐹)  parameters depend on both the 
polyomino 𝑃  (reflecting any layout irregularities) and leaf 𝐿 
(the leaf for which we are estimating delay). This differs from 
most previous work (such as [9]). So we also consider 
restrictions of the above models which split these impacts into 
two separate additive terms: 

𝐵(𝑃, 𝐿, 𝐹) = 	𝐵%(𝐿, 𝐹) +	𝐵&(𝑃, 𝐹)  (8) 
We also consider simplifications of the above models that 

eliminate the dependence of the 𝐾 parameters on the transition, 
𝐹. 

B. Data 
Transistor-level netlists were extracted for each tile type of 

a prototype commercial FPGA architecture targeting an 
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advanced CMOS process representative of the challenges 
explained in Section 1. 

We selected ten example delay trees, covering inter-tile 
segments of every length present in the architecture: 

• An L1 segment driven by a mux in one tile that drives 
muxes in the same tile and one of the four immediately 
adjacent tiles. 

• An L2 segment that drives muxes in the tiles at distance 
1 and 2, either vertically or horizontally. 

• An L4 segment that drives muxes 4 tiles away, either 
vertically or horizontally. 

• An LL segment that drives muxes a long distance away, 
either vertically or horizontally. 

The L2 segments are especially interesting because they 
have fanouts at an intermediate position (distance 1), and 
stretching can occur either upstream or downstream of these. 

For a tree having 𝑁 possible fanouts, we further selected: all 
configurations with one or two active fanouts; up to 10 
configurations with each number of active fanouts from three 
through 𝑁 − 1; and the one configuration with all 𝑁 fanouts 
active. This gives us a set of [𝑇, 𝐶] pairs.  

For each such pair, we selected a polyomino from the set of 
applicable polyominos in a randomized round-robin way so 
every possible polyomino is used at least once. The set of 
applicable polyominos provide considerable variation in 
physical segment length due to array irregularities. The 
polyominos also vary the position along the segment at which 
stretching occurs, relative to the driving and receiving tiles. 
This gives us a set of [𝑇, 𝑃, 𝐶] triples. 

For each such triple, we performed a SPICE simulation to 
get the delay to each leaf active under the configuration 𝐶 for 
both rising and falling transitions. The same upstage driver was 
used for all triples involving the same tree to control for any 
dependence on the transition time of the upstream stage.  

Overall, the data includes a total of 43,000 SPICE delay 
measurements involving 1,731 distinct polyominos. 

C. Fitting Procedure 
The typical way to determine parameters for a linear model 

is to use least-squares regression. However, in the present case, 
where we expect errors in the delays from SPICE (i.e., 
differences between SPICE and silicon) to be relatively small 
compared to model fitting errors, it is more appropriate to 
minimize the worst-case absolute value of the errors [13]. This 
quantity, also known as the L∞ norm, can be readily minimized 
by linear programming. It also may be more indicative of 
guarantees we wish to make to users about their applications’ 
worst-case timing. Finally, this process also yields parameters 
that are less sensitive to the exact distribution of training data 
(i.e., overrepresentation of one type of data point versus others). 

A much smaller cost is also imposed on the sum of the 
absolute value of the errors to break ties, and also on the sum 
of the 𝐾 parameters to reduce overfitting. 

D. Evaluation Method 
We first evaluate the expressiveness of each model by doing 

a fit to all the data and reporting the number of 𝐾 parameters 

employed and the maximum error obtained. (We focus on the 
𝐾  parameters because they seem to be more prone to 
overfitting.) 

Then we did 30 trials of cross validation. Training sets were 
selected as follows. We begin by identifying all the [𝑇, 𝑃, 𝐶] 
triples for which delays are available. Then for each trial, we 
select a randomized subset of these triples subject to the 
constraint that it provides sufficient delay data to determine all 
parameters. For example, for each [𝑇, 𝑃, 𝐿, 𝐹] tuple, the training 
set must include at least one tuple [𝑇, 𝑃, 𝐶] where 𝐶 activates 𝐿. 
Otherwise, 𝐵(𝑃, 𝐿, 𝐹)  will be indeterminate. (For further 
details, see the Appendix.) We make no claim that this method 
of selecting training sets is especially good. It is merely a 
reasonable method we can use to evaluate the relative 
predictiveness of the models. 

The resulting training sets each cover approximately ¾ of 
the delay values. We train each model using the delay data 
covered by the training set, and predict the remaining ¼ of the 
delay values. 
 

IV. RESULTS 
We observed that eliminating the dependence of the 𝐾 

parameters on the transition 𝐹 (fall/rise) did not significantly 
degrade either the expressiveness or cross validation results. 
From here on, we assume that dependence is eliminated, 
halving the number of 𝐾 parameters. 

Table I shows the results. The metrics have these meanings: 
• FittingErr: the maximum absolute value of the errors 

when fitting the model to all available data.  
• AvgErr: the average absolute value of the error on the 

validation set.  
• AvgRelErr: the average of the absolute value of the 

error divided by the correct (SPICE) delay on the 
validation set, expressed as a percentage. 

• RMSErr: the root-mean-square error on the validation 
set. 

• MinErr, MaxErr: the range of errors on the validation 
set. 

All metrics (except for AvgRelErr) are normalized so the worst 
FittingErr is 25. 

We use AvgErr as the primary means of ranking the models; 
the other metrics are just for further information.  

The results indicate that the model of row 13 is the most 
accurate. It uses the novel common path resistance terms and 
merged 𝐵 parameters. AvgErr is reduced by 46% and MaxErr 
by 73% compared to the best model without these techniques 
(in row 2). We attempt to elucidate why by examining the data 
more closely.  

Rows 1 and 8 are fanout-independent models. These have 
the worst errors, both in fitting and cross validation. The other 
rows show fanout-dependent models of increasing complexity. 
These have parameters 𝐾  dependent on: only the tree (10 
constants 𝐾, one per tree); which mux is adding loading (114 
parameters 𝐾(𝑀)); or on both the mux and which leaf’s delay 
is being estimated (1336 parameters 𝐾(𝑀, 𝐿)).  



TABLE I.  RESULTS 

Row Type 
of B 

Params 

Includes 
Common 
Path R? 

Number 
of K 

Params 

Model Fitting 
Err 

Cross Validation 
Avg 
Err 

Avg 
Rel Err 

(%) 

RMS 
Err 

Min 
Err 

Max 
Err 

1 split no 0 𝐵%(𝐿, 𝐹) +	𝐵&(𝑃, 𝐹) 25.00 14.03 16.3 16.9 -44.4 15.7 
2 split no 10 𝐵%(𝐿, 𝐹) +	𝐵&(𝑃, 𝐹)

+ 	𝐾	Σ	𝑋(𝑀) 
18.00 3.62 4.8 6.4 -22.9 35.4 

3 split no 114 𝐵%(𝐿, 𝐹) +	𝐵&(𝑃, 𝐹)
+ Σ	𝐾(𝑀)𝑋(𝑀) 

16.78 3.91 5.2 6.8 -24.5 38.2 

4 split no 1336 𝐵%(𝐿, 𝐹) +	𝐵&(𝑃, 𝐹)
+ Σ	𝐾(𝑀, 𝐿)𝑋(𝑀) 

12.12 12.53 14.8 16.8 -38.3 78.3 

5 split yes 10 𝐵%(𝐿, 𝐹) +	𝐵&(𝑃, 𝐹)
+ 	𝐾	Σ	𝑅(𝑃,𝑀, 𝐿)𝑋(𝑀) 

12.90 3.62 4.7 6.5 -20.7 27.4 

6 split yes 114 𝐵%(𝐿, 𝐹) +	𝐵&(𝑃, 𝐹)
+ Σ	𝐾(𝑀)𝑅(𝑃,𝑀, 𝐿)𝑋(𝑀) 

9.24 4.89 6.3 10.0 -32.0 52.8 

7 split yes 1336 𝐵%(𝐿, 𝐹) +	𝐵&(𝑃, 𝐹)
+ Σ	𝐾(𝑀, 𝐿)𝑅(𝑃,𝑀, 𝐿)𝑋(𝑀) 

8.67 7.53 9.0 15.6 -35.8 105.7 

8 merged no 0 𝐵(𝑃, 𝐿, 𝐹) 23.57 13.69 15.7 16.6 -48.2 9.0 
9 merged no 10 𝐵(𝑃, 𝐿, 𝐹) + 	𝐾	Σ	𝑋(𝑀) 11.37 5.25 6.4 6.7 -18.1 31.8 

10 merged no 114 𝐵(𝑃, 𝐿, 𝐹) + Σ	𝐾(𝑀)𝑋(𝑀) 10.16 3.09 4.2 5.4 -19.4 29.1 
11 merged no 1336 𝐵(𝑃, 𝐿, 𝐹)

+ Σ	𝐾(𝑀, 𝐿)𝑋(𝑀) 
6.65 5.75 6.5 7.6 -29.1 21.5 

12 merged yes 10 𝐵(𝑃, 𝐿, 𝐹)
+ 	𝐾	Σ	𝑅(𝑃,𝑀, 𝐿)𝑋(𝑀) 

9.20 6.58 8.4 8.3 -23.9 3.3 

13 merged yes 114 𝐵(𝑃, 𝐿, 𝐹)
+ Σ	𝐾(𝑀)𝑅(𝑃,𝑀, 𝐿)𝑋(𝑀) 

5.38 1.95 2.8 3.2 -12.6 9.4 

14 merged yes 1336 𝐵(𝑃, 𝐿, 𝐹)
+ Σ	𝐾(𝑀, 𝐿)𝑅(𝑃,𝑀, 𝐿)𝑋(𝑀) 

3.79 1.99 2.8 3.4 -16.4 24.9 

 
  

Looking at rows 1-4 (for split 𝐵) or 8-11 (for merged 𝐵) we 
see a clear trend that the more 𝐾  parameters, the lower the 
training error (FittingErr). This confirms the importance of 
configuration dependence. However, by the time we reach 1336 
parameters, the cross-validated error (AvgErr) goes back up, 
evidence that overfitting has started to occur. 

This is where using common path resistance can help. 
Comparing row 13 to row 11, we see that adding common path 
resistance enables us to reduce the number of 𝐾 variables by 
more than 10x while avoiding overfitting and reducing errors. 

Now we turn to the benefits of the merged 𝐵 parameters. 
Comparing row 1 to row 8, we see that for fanout-independent 
models the conventional split 𝐵 parameters do nearly as well. 
However, for higher-accuracy fanout-dependent models with 
114 or more 𝐾 parameters, the use of the merged 𝐵 parameter 
is indeed beneficial. This can be seen by comparing row 13 to 
row 6, or row 10 to row 3. We surmise that if the model lacks 
𝐾  parameters and their ability to accurately capture fanout-
dependence, the power of the merged 𝐵 parameters is misused 
to overfit the fanout dependence. 

Unfortunately, it is difficult to compare our results directly 
to previous commercial FPGA delay models since those are 
proprietary. We believe they are most similar to the models of 

rows 2 and 3. An open-source model for a commercial FPGA 
is described in [9], but it is just a lightweight model intended 
for use in timing-driven place and route. It is fanout-
independent and has a separate additive term for floorplan 
irregularities, similar to our row 1. It was evaluated only against 
estimates from the proprietary FPGA software, which in turn 
are an approximation to SPICE. 

V. CONCLUSIONS 
Accurate estimates for FPGA routing delay are essential for 

a high-quality design flow. However, estimating delays for 
inter-tile routing in FPGAs is particularly difficult due to the 
combined effects of fanout-dependence and floorplan 
irregularities. We proposed and evaluated a number of 
regression models to predict such delays as a function of the 
routing tree topology, the set of active fanouts (or 
configuration), and the relevant layout tiles. We showed: 

• Models must depend on the configuration in order to 
achieve acceptable accuracy. 

• For the best accuracy, models must account for 
interactions between the configuration and floorplan 
irregularities. Incorporation of common path resistance 
into a model is a novel and effective way to accomplish 



this without unduly increasing model complexity. In 
particular, it is not necessary to have any parameter 
(which must be determined from SPICE data) depend 
on both the configuration and the floorplan 
irregularities. This helps limit the amount of SPICE 
data necessary to determine the model parameters. 

• With the more accurate configuration-dependent 
models, it is beneficial to allow for layout irregularities 
having different impacts at different fanouts. We 
showed this can be done effectively using our merged 
𝐵 parameters. 

APPENDIX: TRAINING SET SELECTION ALGORITHM 
In the explanation below, 𝐿(𝑀)  refers to the leaf driven 

directly by mux 𝑀. 
We pick a training set for each tree 𝑇 as follows. Begin by 

sorting the list of all [𝑇, 𝑃, 𝐶] triples for which we have SPICE 
data into a random order. Then pass through the list, selecting a 
triple for inclusion in the training set if and only if it meets any 
of these criteria: 

• ∃𝑀 ∈ 𝐶  such that we have not yet selected a triple 
[𝑇, 𝑃, 𝐶']  where 𝑀 ∈ 𝐶′  (Needed to estimate 
𝐵(𝑃, 𝐿(𝑀), 𝐹).) 

• ∃𝑀", 𝑀# ∈ 𝐶 such that we have not yet selected a triple 
[𝑇, 𝑃′, 𝐶']  where 𝑀", 𝑀# ∈ 𝐶′ . (Needed to estimate 
impact of turning on one mux on the delay at the leaf 
driven by the other, and hence estimate 𝐾(𝑀", 𝐿(𝑀#)) 
and 𝐾(𝑀#, 𝐿(𝑀")). 

• ‖𝐶‖ > 1 and ∃𝑀" ∈ 𝐶 and 𝑀# ∉ 𝐶 such that we have 
not yet selected a triple [𝑇, 𝑃′, 𝐶'] where ‖𝐶′‖ > 1 and 
‖𝐶′ ∩ {𝑀", 𝑀#}‖ = 1. (Needed to distinguish impact of 
turning on 𝑀" versus 𝑀# on delay at some other leaf, 
and hence assign unique values to 𝐾(𝑀")  and 𝐾(𝑀#).) 

• ∃𝑀 ∉ 𝐶  such that we have not yet selected a triple 
[𝑇, 𝑃′, 𝐶'] where 𝑀 ∉ 𝐶′. (Needed to estimate impact of 
not turning on M on the delay to some other leaf, and 
hence estimate 𝐾(𝑀).) 
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