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STORAGE RATES FOR A MEMORY WITH A SELECTOR t
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Abstract
We consider a memory composed of N discrete cells, each characterized by
a defect state s drawn independently according to p{s). The probability of
retrieving a symbol ¥ given s and the stored symbol % is completely specified by
p{y |z,s). The selector identifies a subsel of "good" cells, which alone are used
to store data, in an effort to improve the reliable storage rate of the memory.

For some fixed =1, the selector chooses & subset of 7N cells based on the
states [s;,...,5y] = s. The subset is denoted by a binary vector u, where w;=1 if
and only if the % cell is used. The symbols [z;,....Z,x] are stored in order in the
selected cells. A storage rate K is achieved ;f there exists & sequence of
(25N, N} codes, selection rules p(u |s) and decoding rules such that the proba-
bility of error tends o zero,

The starageb capacily is established for iridepem.dent selection rules p(u|s)
=]] p(w|s;). It is then shown that the capacity is higher for the more general

5
class of causal rules p(u|s)= H oy |8, ..., 5). However, for the cell consist-

ing of Ltwo binary symmetric channels {BSCs), the capacity for causal rules is
achieved by an independent rule. A similar result holds for any two-state cell
when the state is known to the decoder.

For arbitrary selection rules, rates higher than those p@ssible with causal
rules are achievable, even for two-state B3C cells. The capacity for arbitrary
rules is as yet unknown.
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1. Introduction

In many computer memory systemé. it is possible to identify.tota]ly or par-
tially defective storage locations by testing. Examples are media‘;.-implerfection;s
on magnetic disc or drum memories which decrease the signal to noise fatio' and
"leaky'"or "stuck” storage ceﬂs or columns in ihtegrated circuit random access

memories (RAMs). Such memory systems can be modeled as a discrete

[y

memoryless channel with statistically determined states [1]. Several research-

efs have studied the achievable rates for this channel when information about
the states is available to the encoder, decoder or both [1]-[3]. Heégard and El
Gamal [3] give a set of achievable combinations of storage rates and rates of
defecf. description to the encoder and decoder. For the case of no defect
description, and also the cases of complete description of defects to either the

encoder or decoder or bSth. the given achievable storage rate is optirnal.

Although defect state information is often exploited in current memory

technology, it is used in a simpler way than state dependent coding. With mag-

 netic disk memories, the user simply avoids writing data in sectors which have

been identified as defective [4]. Many commercially available 64Kbit RAMs
employ either laser or electrically blown fuses which permit the connection of
§n-ch_ip spares to replace defective memory cells [5] [6]. These strategies
amount to rriere avoidance of defective locations, rather than the use of state
information in coding. Ordinary coding is still employed, of course, to ensure

reliable storage in the presence of noise and any remaining partially defective
cells.

In this paper, we investigate the stbrage caf)acity when defect ‘mformation
is used to skip over some of the cells. The memory is again modeled as a
discrete memoryless channel with statistically determined states with the addi-

tion of a selector as depicted in Figure 1. Based on the defect information, the
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selector chooses some fixed fraction r of the N cells and connects them in order

to the encoder/decoder. The storage rate of the memory is defined to be

RE=K/N.
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Fig. 1: Model for a memory with a selector.

The requirement that the selector preserve the order of the cells, though
somewhat arbitrary, insures that the defect information is used only to skip
cells, not as a basis for permuting them. QOtherwise the cells could be reordered
into groups by state and a separate encoder/decoder used for each group. This
reduces the caéacity. problem to the case when both the encoder and deceder
receive the defect state information. The complexity of such a permuting selec-

tor is certainly higher than that of the order-preserving one considered here.
Clearly, if a defective cell has zero storage capacity then the selector can
only increase the overall capacity of the memory by skipping it. However, for a

partially defective cell, the following tradeofl arises. If the selector is very



demanding and selects only perfect cells, a small fraction of the cells Mll be
used, limiting the storage capacity. If, on the other hand, the selector uses
-many defective cells, some mixing of defective and non-defective'chaﬁnels must
occur due td the ordering restriction; this may lower thé overall capacity of the

memory. This tradeoff is examined in the following example.

Ezample A: Three state binary syrmmetric channel: clean, noisy and stuck.

Consider the channel shown in Figure 2, where X represents 't.he storage

symbol, ¥ the retrieval symbol and S one of three possible defect states.

s p(s) X | Yy

0 <—2—0 |
| __ | ,
AR 4P 1Z1 |

-Fig. 2: Memory cell of Example A,

State 1, the "clean' state, is characterized by a binary symmetric channel (BSC)
with crossover parameter g;. State 2, the "noisy” state, is characterized by a

BSC with parameter &3, where £,;<g,<1/ 2. State 3 is stuck at zero. We have

4

£y y#xr s=1
1—&, y=z s=1
£a y#zr s=2
plylzs)= l—gp y=2 s=2,
1 y=0 s=3
L0 y=1 s=3
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Let P(S=8)=p, P(S=1)=pq and P(S=2)=p7. where 3§ denotes 1—18.
The éimplest f;ype of selection procedure would decide whether to use each
cell based only on the state of the cell itself. This is termed an independent »

selection rule. Obviously, state 3 cells should be skipped since they can store no

information. However, it is not se clear whether state 2 cells should be used or .

not. If only state 3 cells are skipped, a fraction 7 of the cells will be used. Of

these, a fraction g will be of state 1 and 7 of state 2. The rate achieved is

R =g [1-h{ge;+7es)].

If this mixing of states 1 and 2 lowers the rate too much, we might consider ‘

skipping state 2 cells as well. This achieves a rale

| R =pg [1-A(e))].
As shown in Figure 3, each strategy achieves the higher rate in certain cir-

cumnstances.
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Fig. 3: Independent storage rates for Example A Sold curve is
R=p[1~h(ge,+§&z)]. Dashed line is R=pg[1-h(e;}]. £;=0.001, £,=0.27.

Theorem 1 shows that the better of these two strategies achieves capacity for

independent selection rules.
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Can more complicé.ted selection rules achieve higher rates? If we examine
a causal selection rule, under which the decision to use the ith cell is based on
the states s,, ..., 5;, the answer for this example is no. This is proved by
Theorem 3.

The main reason for studﬁng independent and causal rules is their simpli-
city, although there may be certain practical sitﬁations where these restrictions
| on selection rules apply.

If arbitrary selection rules are permitted, higher rates may be achieved for
certain values of g, &; and &,. This is done by skipping so as to bring as many
state 1 cells as possible to odd numbered positions. Codes of different rates are
- then used for even and odd symbol positions. The codér has no knmfdedge of the

state other than through the different statistics for the different positions.

The remainder of this paper focuses on storage ratés for a memory with a
selector. In Section 2, the problerﬁ is forrﬁally introduced. In Section 3, we
establish that the storage capacity for indepéndent selection rules is achi.eve.d-
by deterministic rules. We also present a simple extension of Shannon's result
for causal state information at the encoder [1] to allow for the addit.ion of an
independent selection rule. | |

The example of Section 4 shows that the storage capacity for the more gen-
eral class of causal rules is higher than for independent rules. However, for the
cell consisting of two binary symmetric states, the capacity for causal rules is
achieved by an independent rule. A similar result‘holds for any two-state cell
when state information is known to thé decoder.

The examples of Section 5 demonstrate that arbitrary rules can achieve
higher rates than causal rules. The storage capacity for arbitrary selection
rules is, as yet; unknown. We conclude withla tabular summary of the 'known

capacities when the state information is available to one or a combination of the



encoder, decoder or selector.

2 Deﬁnitiﬁ; of the Model

We now give a deiaﬂed definition of the model for a memory with aé&lec.tor.
"~ shown in Figuré 1. The memory itself is c_omposed.of N independent, discrete
memory cells [X, Y, S, p(s) plylr.s)]. Each defect stale s€S is chmsen
‘ independently according te p(s). The probability of retrieving a symbol ¥y €Y
given the stored symbol z€X and the state s is completely specified by a,‘transi-
tion métrixp(y lz,8). S, X and ¥ are assumed finite.

For some fixed selection rafe r<1, the selector chooses a subset of 7N cells
based on the defect states [5,,55,....5y] =s. Thus the selection is completely
~ specified by a vector U, where for 1<i=<N, u;=1 if the i®* cell is used and is zero
otherwise. The conditimﬁal distribution p{u |s) is called a selection rule. Note

" that U and X are independent.

Storage symbols [z,.Za,.... %] = x are stored in order in the selected cells.

That is, z;, 1<j=<rN, is stored in cell % if

i _
Uy=1and 3, Up =7 (2.1)
k=1 v
For notational convenience we define the random vector TeS™ by ty=s; fori, j

satisfying (2.1). Thus £; is the state of the cell used to store z;.

A code [P, rN] for the memory with a selector consists of a set of g®V
equally likely messages #={1,2,....2%¥}, an encoding function f: ¥ -+ X¥, and a
decoding function g: Y™V - W. The probability of decoding error, averaged over
all messages, is given by

Fo = P(g(X)#W)
where p(w,y) is evaluated based on the selection rule and memory cell statis-

ties.



A storage rate R is achievable if there exists a sequence of [2FY, 7] codes
and selection rules p(u |s) such that the probability of decoding erfof tends to
zero with iﬁqreasing N, | |

We define two subclasses of selection rules:

(i) independent selection rules, where p(u |s) is of the form

1T pasls).

=1

(i) causal selection rules, where p(u|s) is of the form
N : .
EP(Wlsxa Sz, .. -4 Si).
=

" The storage capacity C for a given class of selection rules is the supremum

over all rates achievable with rules in the class.



3. Independent Selection Rules

The independent selection rules ﬁ P(u;ls;) allow for randomization in
i=1 .

selecting the cells to be used. In the following theorem, We prove that the
optimal independent rules are deterministic. Thus randomization is not neces-
sary and any inde;;endent rule can be outperforméd by arule that selects a cell
if and only if its state is in some subset v of S |
Theorem I: For any memory cell [X,Y.5.p(s).p v(y |z.s)], independent selection
rules achieve storage capacity ‘

G zrgngch(SEv) max [(X;Y[SE’U').V (3.1)

Praof: Achievability is easily shown. Let p{w;[s;)=1(s; €v), where 1(-) denotes
the indicator function. By the law of large numbers, the fraction of cells used
approaches P{Sev). Each used cell stores information at a rate given by the

mutual information in (3.1).

The converse is more involved. We are given a {28V #N) code for the cell

N
[X,7,S,p(s), p(y|z.s)] and an independent selection rule 1] p(u:ls). Inorder

=1
to take account of the effect of the unused cells on the capacity, we define the

random vector Ze(Yuie])V, e ¢ Y, by the following one-to-one function of Y and

U. For jiu)=3 u,, 1<i<N, let
: k=1

[wiew it w=
%27 e if u =0

The symbol e may be interpfeted as an erasure. We deﬁhe
plw,x,z,s,u0)=
. N _
plw)p(x Iw)_Hlp (s)p(w ‘Si){l (w,=1)P{Y=2 ]xj(i.n)-si)'*'l-(’ui:0)1(Zi=e)],
= .

Note that the induced conditional distribution on Z given X and U is of the form

, & | |
plzixu)= ;_];P(Zz‘ zj(i.q)»ui) (3.3)

1
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where

Eploop (s s [L =1 (Y54 3y 50) F 1 (e =0) Lzs =)
VY (2 Izj(i.u)"ui): &

2o (s)p (w |s0)
8¢
By Fano's Inequality, for g5 -0,

R= j—lv—I(X;Y) + ey

1A

-%I—I(X;Y.U) +en .
= -k-!(x;z,‘u) + ey ( (3.2) is one —to—one)

= —%—I(X?ZIU) + ey

= —}FE I(X:Z|u) + ey

N .
=———11\]-E S I(X;amyiZi ) + en
i=1

[

since p(z |xu)isa prodﬁct distribution {3.3). Note that the mutual information
'depends on w4, k#i, only through j(i,u} and thence through the corresponding
distribution p(x;;q)). We escape this dependence by maﬁmizing over all distri-
butions p(x;): |

B |
R=s —F X I (X Z; |y )+e
LB $ ma IO ) e

i=1

=max F max I{(X;; Z; |w;) + ey
i »(z;)

= max max J(X;:Z; | U;) + sy . , o (3.4)
i plx)
< IGZIU) + ey (s
S e IO e S

Equation (3.4) follows by noting that z=e (an erasure) occurs when ;=0 and so
I{X;;Z; | U;=0) =0 regardless of p{(z;). Thus the maximization over p(z;) can be
moved outside the expectation over U,

Now ahy p(u |s) can be represente.d as a mixture of deterministic distribu-
tions. More formally, for any p(u.|s) there exists a probability mass fuhction

p(v) over {v:v<S) such that Ypwpl{w|sv)=puis) for e\'rery wel and

-9-



s €S, where

1 if u=1and scv

plulsw) =31 if u=0and s€v

¢ otherwise.
We then have the joint probability mass function

plz.zsvu)=

p(2) p(w) p(s) plu|s. ) [iu=1)P(Y=z |z 5)+1(u= o)1(z=e)
It can easily be shown that under (3.6)

(3.8
HX:Z|U=1,V=0) = P(Sev) I(X;¥|Sev), and
IX.Z|U=0,V=u) =0 (3.7)
Returning to {3.5), we have

R< max maxI(XZ]U) + ey
pluls) plz)
maxmax[(XZlU) + ey
plv) plz) -
< maxmax [{X;Z|UV) + ey . (independence}
plv) piz)
<maxm(axl (X:Z|Uw) + ey

= max P(Sew) I I(X Y|Sev) + ey
by (3. 7) and the theorem is proved. =

Spemahzmg Theorem 1 to two defect states ylelds the following coroﬂary
Corollary 1: For the case S = §1,2} with P(S=1) =g and P(sz) g, indepen-
dent selection rules achieve capacity _
G = max{r;lgx I(X;Y). q 151(3( I(X:Y|5=1), § max I{X;Y|S 2}}

The following example demonstrates the use of the above corollary. It will
be considered again in Section 4

Example B1: Binary memory with three retrieval symbols

Consider the memory cell of Figure 4, with X={0,1}, ¥={a.,b,c}, §={1.2]
and P(S=1)=1/2

{This situation might arise if the signal retrieved from

-10-



s p(s) X -y
1 1/2 o— 2
1/_——b

(ol

a

Fig. 4: Memory cell of Example B.

_ défective cells is offset from normal readout levels). Corollary 1 gives the follow-

ing capacity for this memory under an independent selection rule.

C“z Ce = max {1;:1(&3{ %I(X;Y[S=1), r&%%f(){;}’ls:z). max I{(X:Y) } :
The first two termé ore obviously equal to % bit. The third term corresponds to a
mixtufe of thé two states identical to a binary erasure channel with parameter
1%, which has a capacity of % bit. Thus € = % bit.
The following corollary extends Theofem 1 to allow for the provision of

defect, information to the decoder.

Corollary 2 If t, the vector containing the states of the‘selected cells, is known.

to the decoder, the capacity for independent rules is

Cyq =max I(X:Y]|S)
piz)
Proof: This rate is obviously achievable by using all cells. The converse is a
straightforward variation of the proof of Theorem 1 and is therefore omitted.
The following example demonstrates the use of Corollary 2. It will be con-
sidered again in Section 5.

Ezample C1: Channel with defect information at the decoder.



Consider the memory cell of Figure 5 with X={o,b,c.d], ¥={0,1}, S§=§1.2}

and P(S=1)= 1/2. Assume in addition that the decoder is givén £t

s p(s) X | y 1
1 1/2 '

2 172

d} 1/ \ =

Fig. &5: Memory cell of Example C.

The capacity is given by Corollary 2 as max I(X,Y]S). With p(e), p(b).
. B
p{c), and p(d) denoting the storage symbol probabilities, it may be shown that

p{Y|X,S=1)
»(Y|S=1)

=)+ o)+ kpe))-pe)me)

I(X,;Y|S=1) = F logp

We can determine I{X;Y|S=2) similarly, and thus

I106:Y|S) = Bhfp(a)+ %p(0)+ Bp(c)) + %Ap(0)+ hp(a)+ kp(d)] - %
=B1+B1-¥%=% ' .

But a mutual information of 1/2 bit is achieved by a uniform distribution on the

storage symbols. Thus the storage capacity is 7 /2 bit.

-12-
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In general, the addiﬁon of a selector may permit higher rates of storage
even if defect information is already provided to the encoder. This was the case
in Example A. In the particular case that the encoder receives causal informa-
tion only and the selection rule is independent, the storage capacity can be

found by an application of Theorem 1.

Provision of causal state information to the encoder was considered by
Shannon [1]. The input symbol z;€X is allowed to. depend on the}current. and
previous states sy, 8z, .. ., §j. As usual, the states are assumed to be indepen-
dent. Without loss of generality, we take S ={1,2,...,||S||}. Shannon proved
that this channel is equivalent to the derived channel where the input symbol
X;EX "SI js independent of ti,he states and fepresents a »mappir;g.
[zy, ..., = s11] from the state alphabet S to the actual channel input alphabet
X. Furthermore, if the States are identically disiributed, the capéucity of the

channels is given by

= max X .. .. Xus 1 Y),
where the mutual information is computed under the conditional distribution of

the derived channel

plylzy ... z)s))= LrE)pwiz. <)

This result can be extended to give the capacity of a memory with causal
sté.te information at the encoder and a selector operating under an independent
selection rule. First, observe that under an independent selecfion rule the
selected states {f;} afe indepéndent. Therefore, Shannon’s equivalence result
applies to the channel formed by the selected cells: simply substitute £; for s;
and the induced distribution p(t;) for p(s;). A storage rate can be achieved with
a given selection rule and state-dependent encoding algorithm if and only if the
same rate can be achieved with the éa.me seleétion rule for the derived channel.

Since the derived channel does not provide state information to the encoder, its

_18_
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capacity is given by Theorem 1. We have the following corollary.

Corollary 3: When the encoder is provided with causal state information

£y, tp,..t; before symbol z; is stored, the capacity for independent selection

rules is

C= max P(SEV)P(:BI?.L%%S“) KX, ... ,XHSH;Y[SEZ'U)‘.

-14 -



4. Causal Selection Rules
~In general, caﬁsal rules achieve higher rates than independent rules. This
is demonstrated by reconsidering Example B.
Fzample B2.
Consider the following causal rule for the cell of Example Bl (Figure 4):-
, .

i-1 :
1 =), up+lis odd.

k=1

1 jisevenands; matches state

of previous used cell.
0 otherwise.

» VP(Ui'-:ilSl,Sg, .-. " .Si) =

\

Breaking t, the vector of selected states, into pairs, we find that each pair of
states are either both 1 or both R, with equal probability. For example,

- s=[11211222121] would yield u=[11100111101] and t=[11222211}.

Let I, be the number of cells skipped prior to a cell selected for an even
position in the t vector and after the previous selected cell. Let L, be defined
similarly for odd positions. Then

E L, =0 and
A SRR S SR I TR
E’Le-02+14+28+316 = 1.
Thus the expected number of unused cells per pair of selected cells is 1, for a

“selection fate o= —g—-

We now compute the capacity of the channel consisting of one pair of used
cells with identical but unknown states, shown in Figure 6. A maximum mutual
information (X Xz Y),¥2)®1.77155 bits is achieved by input distribution

p{00)=p(11)=.207, p(10)=p{01)=.293. The storage rate achieved is

R =r max %I{X, XY Ye)
. plzq.%5)

~ %%(1.77155) = 5905 bits

which exceeds the independent rule capacity Gz =% .

-15-



XX, Yy Yo {
0 aa
ab
Ot ba
bb | ‘
10 bc |
}cb
i1 G

Fig. 6: Pairwise channel for Example B2.

In order to study causal rules, we mﬁst find a way to relate the probability
distribution on T, the states of the selected:ceﬂs, and the expected number of
cells which have to be skipped to achieve that distribution. The next theorem is
a stepv in this direction. It givés the minimum expected number of unused céll.é
for any causal selection rule and two-state memory cell in terms of the distribu-

tion of 7; conditioned on any function of the past states. This bound will be used

to prove Theorems 3 and 4.

Theorem 2: Take S={1,2] with P{S=1} = q. Let L; be the number of unused cells
between the j—1%% and 7% used cells, as shown in Figure 7. (L, is the number of
unused cells prior to the first used cell). Let Z be any random variable indepen-

dent of the set of "future” states, {s;.s;+1, . ...sy], where ¢ is the smallest

i-1
integer such that j = ) wu,+1. Finally, define /;{a) as the smallest E(L;l2)
k=1

under any causal selection rule for which

- 16 -
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e
i“ L.

a = P{T=1|Z=2}

Li{a) = max {%—_—% 0%9%.

Then for all j, 1<j<rN,

R
> }""sz
3 |l | .
1 4 2“O
2 5 |}e—L,=1
3 6
4 7
5 8 | =3
A
. 0
: 10 |
i 11 Lg=0
i
n
N-1
N

Fig. 7: A selection of cells.
Proof: Since the future states are independent of each other and of Z,

P(si.Sirnnsw2) = ﬁ[ﬁp (8e).
Consider any particular L;(a) and drop the subscript. Begin with ihe case
g<o=1. For a=g it is obvious that L(g)=0 since we can simply use s; without
skipping at all. For a=1,

L(1)=0qg +1g9 +2q% + -+ =g/q.

-17 -




It ‘is eésily shown that L{a) = (a~q)/ g for g=a=<l. Given any z and a
desired value of a;—-P(T=1|z), construct the following rule: with pfobability
(a—q)/ 7 wev‘ keep skipping until a state 1 eell is reached and with probability
1~{o—g)/ @ we do not skip at all. Under this rule, E(L|z)=(a—g)/q, and‘by
definition, L{c)<E(L}2). | ‘

Now we show that this bound on L(a) is tight. Suppose L{a)}<{a—g)/ g for
| some g <a<l. Then by definition there must .exiét a z and a selection rule under
which P(T=1|z)=«a andE{L[z)#L((x}<(a~g}/q. Modify the rule ag follows:
whenever the rule would use a state 2 cell, which happens with probability &,
skip it and start again from that cell applying the same rule. Continue to start
over whenefzer a state 2 cell would be selecﬁed, so that the selection of a state 1

" cell is assured.
The medified rule achieves a new value of:

P(T=llz)=a+a’[tx+ﬁ{'--]--"] =1
and ’
E(L|2) = L(e) + a[L(e)+1) + 2L (@)+1] - - -
= [L(a)+1]/a ~ 1,
Then
L) = [Li@+1)/o -1

< 9%1+ 1‘]/a-— 1

- L
‘ q
which is a contradiction since L(1)=g§/q. Thus L{a)={a—q)/ ¢ for g=a<l. The
result for O=a=gq follows by symmetry, concluding the proof. =
We now apply Theorem 2 to demonstrate that for certain two-state memory

cells causal selection rules do no better than independent rules.

Theorem 3: For a memory cell consisting of two binary symmetric channels with



crossover probablhtleq g, and =4, and with P(S= 1) = g, the storage capacity for
causal selection rules is equal to the capacity for mdependent selectmn rules

and is thus given by

C = Gg = max [@‘[1—h(82)]. [1~R(gei+Fe2)]. Q[l—h(sl)]}.
Proof: Since an independent rule is also a causal rule, achievability follows from
Corollary 1. To prove the converse, we first reduce consideration to rules with

only two or fewer distinct values of P(7}=1), 1=j<rN.

‘ N
Given any causal selection rule 11l |sy,....5;) with selection rate =, let
i=1

z;=z; @y; and z7 = {z1.,...2;1}. Define the following probability density func-

tions for 0=o=1 and 1=<j<rN:
fialz}) = 6fa—P(Ty=1]2;)] and
1 & =
(o) = ;jv“jgl E fialz),
where & (x‘) is a unit area impulse at z =0, the Dirac delta function.

By Fano's Ilﬁéquality and the symmetry of the channel,

1
R = }i’[( ) + gy |

1 & _

- 7v“,-=1[ 1-H(7175) +ew

= LB gl ale,p(ry=1127) + 2oP(T;=2 )l
NJ-=1 1 i~ ZJ' E€a iz IZJ) +8N

N 1

= i E ffj((Xle—) rl——h(asx + 382)]{1& + &N

NA2T 4 \

(by definition of f;(a|z;))

1}

<

|H
2

E fila]zi) {1—h(a£1 + (—Xﬁg)]da + &y

=r [ £(a) {1— h(as, + asz)]da ey | (£.1)

1
{ TN {3
1
| {
by the definition of f {«). We denote the quantity in brackets by /{«).

-19-



Note also that with L; and L(a) defined as in Theorem 2, we have the follow-

ing condition if the scheme is to skip few enough cells to achieve the given selec-

tion rate 7;
N
N(l-r)=FE }, L;

i=1

N
= Z EE(LJ']ZJT)

i=1

> g E L{ P(T;=1]z7)) (by Theorem 2)
=N \

N 1 B
= :21 E{fj(af |27} L{a;) doy
J-——
by the definition of f;{e;|z;). Dividing by 7N and expressing the integral in

terms of f (a) we have

o1 .
L E{f(a) L(a) dav. (a2

We now employ the extended Ahlswede-Korner lemma as stated in [7].

Lemma: Let K be any subset of R? consistihg of at most & eonnecteci subsets.

Let Fp,,. m=1,2,..k be real valued continuous functions on K. Then for any pro-

bability measure p on K there exist k£ elements a; of K and constants

k
p:=0, ),p;=1, such that for all m
i=1 )

7{ Fpp(a) dp(a) = %_gpﬁm(m) .

Returning to the proof of Theorem 3; we know from the lemma that there

exist pi, pe=1-p;, o) and g, all between zero and one, such that

. ' 1
p1l{)) + pal(eg) = { 7 () I(e) da

= (R—en)/7 (4.3)

and

Pl (o) + peLog) = [f(a) L(a) do

-20-




< 1T (4.4)
r

The inequalities tollow from (4.1) and (4.2), respectively.

We next show that consideration may be further reduced from two to only

one distinct value of a. Solving (4.3) for R and using (4.4) to substitute for r

yields

| -1
R= [FHL(OQ) + pel(ozg) + 1] onL(ax) +P2L(az)] + ew
< max [L(a) + 1}'1 I{a) + & |
35101.“21
by some simple calculus (see Appendix 1 ). Expanding the set over w_hich the
maximization is taken to include O<a<1 we have
R= max [L(a)-%-l]—l I{a) + e

= aerﬁﬁ%l; [L(a)-f-l] I{a) + £y

= max {6[1—h(az5]. [1-n(ge:+Te2)], q[l-h(sl)]} +ex.
The second inequality follows from the diﬁeréntiability of L{a) in the intervals
(0.g) and (g,1), and from the convexity of / (d) (see Appendix 2 ). The equaiity
follows from the definitions of L(a) and /{2), and Theorem 3 is proved. =
We now prove a similar result for any two-state memory cell vif the state

information is available at the decoder.

Theorem 4: For any two-state memory cell if the decoder is given t, the state

~information for the selected cells, Lhe storage capacity for causal selection rules

is equal to the capacity for independent rules and is thus given by

C=Cq =max I(X,Y]S).
riz)

Proof: Achievability follows from Corollary 2, so we deal only with the converse.
Given a (28N, rN) code for the two state cell [X, S, Y, p(s), p(y|z.5)] with

N
S={1,2] and P(S=1) = g and a causal selection rule TIeulsy .. .. s;), define

i=1

T T e N e T T sonn om st i e caosaae T g eadl LBl e e P R L, T 5 P
AT L TS N e T AN R e T gt T TR T et PR e DA g T e S N et P 0 T s e el A B



the joint probability mass function

N - ' N
plwxysut)=plwp(x|w) I_Il [p(s)p(wlsy - .. vsi)]p(tls,u)};g ply; |z; . S=t;).

Note that the induced conditional distribution on Y given X and T is of the form

P(ytxt)—_—[p yi |z, 5 =t;). | (4.5)

Let p;(t;) and p; (z: } be the induced marginal distributions on Ty and X;.
Then the joint marginal distribution is

p; (z;.5.55) = i (oo (80P (ys |75, S=1y).

We wish to make use of Lemma 1 to show that only two distinct joint margi-
nal distributions p;(%;,%5.4;) need be considered. To do this we need to define
functions 7(-) and L(-) which are continﬁous over some connected set of distri-
butions fhat inchudes all the given marginal distributions. We are led to define a

random variable Z, 1=<Z=rN, with probability density function

7(z) = ﬁ (= ).
We define the condltmnal distribution p( y.t |2) by mixing the two distributions

E
2

whose mdlces are the floor and ceiling of z:

plzy.tlz)=
(2 ~LDpe(t) + (2l + 1-2)pa®)| [z HeDpsa(z) + (el 1-2)pp ()] p(y |2,5=t).

Note that p(z,y.f | 2) is continuous in z and that

p(zy.t|=) =p(=y.t), =<{iR,.7N} (4.6)

Proceeding in the same fashion as in Theorem 3 we define

Hz)=I(X.Y|T.z2),
afz) = P(T=1|z) = é} %:p(x,y,if:l]z) and

L{a{z)) = max {q—a(z) . a{z)—g }

1—g q

By Fano's Inequality, for ey -0,

R< -——[(XY]T) + ey

R e ST R RS e e A g .’._‘ L T e v e G A A L v
Y i s :

S R e B B N DAL R e B N e T L R g SRR B S T T BT H e R
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o
LIy
! o~

= -1172 I(X;:Y;|T3) + ey (under distribution (4.5) )

- }—i,—_ 1(X:Y|T.255) + o (by (£6))

=r ff(z)](z)dz %aN. | | (47)
1

by the definitions of f (z) and /(z).

Now, with I; defined as in Theorem 2 we havé

I
["Jé

EL,-

Dty
"u
X

. | Z L(x(7)) (by Theorem R}

!l

=rN {f(z)L(a(z))dz. : (4.8)
Applying Lemma 1 to (4.7) and (4.8) we obtain |
(R-ew)/ T < paI(=)) + pel(22) and

s pu(a(zy) + pel(a(ze)

for some py, pg—l—pl, z; and 23 Then

k= [plL(a(z,)) + pzl,(cx(z«.'g))~!-1]—1 {1711(21) +pal(2z2)| + &n

< max {L(a(z))+1]"‘ I(z) + ey (see Appendix 1)
ZE€fz %)

=< max max max{-q——i. a_-—q} + 1
plz) 0=o<1 1—-g q

[aI(X;Y].S':l) + (1~a)I(X;Y|S=2)] + ey

-1

by the definitions of L(a) and /(z) and (4.6).

¥e now perform the maximization of this expression over a. For a>g,

[ e 4 '
ST o S| {a[(X;Y| S=1) + (1—a)1(X;Y{s=z)]'
do q ‘
= T.Ig—_((x;Y]s:z) <0.
For a<g,
%t’z.ﬁi?sﬁét‘*a *"WNWM" ilmf*a.t,,;#-fésé"%} "‘"*-z“'*ﬂ“’*e’x ,’,'?«’*""*’.sé‘*f"xi».'.“"":iw 7, J "“ i AR, u o S, .””‘* 'w ke sm x:?. RN -»¥ I ,_r.wm..r r,,t.» b o m"w o B Y
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~1

—

E‘f—;f—)g—f(X;YiS=2)ZO.

Therefore a=g must give the maximum value and

R=max I{X;Y|S) + ey
rlz)

which completes the proof of Theorem 4. =

{af(X;Y}S—‘—i) + {l—a)I(X;Y]SZZ)]
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5. Arbitrary (Non-causal) Selection Rules

In this section we‘ present two examples which demonstrate that non-causal

selection rules can achieve greater rates than causal selection rules.

Frample D: Two BSCs.

Consider the cell consisting of two binary symmetric states, 1 and 2,
obtained by eiiminating the stuck state (setting p=0) in Example A. Theorem 4

states that the capacity for causal rules is

¢ = max {qm—ml)]. [1-h(ge+7e)]. q[i—msz)]}.

‘We compare this with the rate achieved by the following non-causal rule for the

case g=g=1/R. Forj= Sj u,+1, let
k=1

0 ifj odd, s;=2, and §;,;=1

P(Uizllsll Sgy 000y ’S.N) :{1 otherwise.

Eséentially. the rule works sequentially by ;;airs of used cells. A state 2 cell is
not selected for an odd numbered position in the t vector if there ig a state 1
cell following it, which would be preférred. However, any state is acceptable for
an even numbered position. The rule thus seeks to maintain a high proportion of

state 1 cells in the odd numbered t positions. For example, s=[111221121222]

would yield u=[111101101111] and t=[1112111222].

Since the rule functions independently on pairs of sélected cells,

p(t) = 1:1[ 2 (t;.t;41). We can determine p(£;.;+;) with the aid of the following
j odd

table for j odd:

A DY - E],

A
gt

FEAUI AR el

I
%

oo
o,

-,:.:,i\i“—‘ 11 L;:”

'3 O - I2

§

|!+—~|A|—~Ay——E
i
(e lf
,:l,{'
e )——‘t—-‘-‘LH'
Z\J}—*l\DHt‘*

Iy
Yy

&
N
I
OJF

fous
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X

#
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i
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Since each triplet of states s;, 5;4;. Si+2 occurs with probability 1/8, we have

the following distribution on {;, £

£ i Rt
1 1 3/8

1 2 3/8

g 1 0

g R 2/ 8

Also, the expected number of cells skipped per used cell is (1/8‘4— 1/8)/2 = 1/8.

The selection rate is thusr =B/8.

We now compute the capacity of the symmetric channel congigting of a pair
of used cells with states #; and f;;. There are four possible error pairs [2;, Z;11]

whose probabilities are determined by €, £z and p(f;, £ie1). -

?4__&1 g;z;—,zgﬂz

0 (3/ B)E,E,+(3/ B)EEo+(R/ B)EeE,
1 (3/ B)g 81 +(3/ B)E 182 +(2/ B)Eree
0 (37 B)e,5,+(3/ B)e To+(R/ B)egty
1 (3/B)e,8,+(3/ B)e,8,+(2/ BYege,

»—-»—&oc,l_gfz

Since the channel is symmetric, [(Xj, Xj:1;Y;, Y541} = R~H(Z;,Z541) and we

can achieve

1 N .
N _2_31 (G, X540 Y, Ya1)
fodd
8 1
=—é~é—~[a-—H(zj,zg-+l) .

K=

For many values of 871 and &g the above rate is greater than the indepen-

dent {or causal) rule capacity. For instance, £,=.120 and £,=.325 yield

—é——[l——h(sl)] N 235320 bits

1-h(}% e+ ep) M 235294
8 1

o 5 [R—H(Z;.Zj1)] ~ 2362562

so that the above non-causal rule rate exceeds the independent rule capacity by
.000932 bits.

AbaEv b iy, e e R L . . L T P TS R e 3 5 . PN
I T e g s D T O T - T SOV I S T R L ST IO B e e 40 T ~ o
: Z ] e B w e e M Sy DR bt e Ny s e e e Hon PO S S
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Example C2: Defect Information at the Decoder, Revisited.
Consider the following non-causal selection rule for the cell of Example C1

(Figure 5). Forj=l}ifl u, +1, let
k=1

0 if j odd, s;=R and §;41=1
P(Ui=1]sy, ....,sy)=4{0 if j even, 5;=1 and 5;4,=2
1 otherwise.

The rule seeks to increase the probability that a state 1 cell is selected for an
odd numbered position in the t vector and the probability that a state 2 cell is

- seleeted for an even numbered position. These events are called matches.

For example, s=[111221121222] would yield u=[111101011111] and | -
t=[1112121222).
Because of the symmetry of this rule, we only consider the case of édd i
We can break the rule into 'mdependént blocks by determining ;,; as Qell aé A

if 5;,, is considered in the determination of ;. This is shown in the following

table:

NNH‘E{J
00 gg
;—-»-OI—hlS
NH)—%#'}
0 l-E,"

1
1

For every execution of this tabulated procedure, we have

expected number of cells skipped = 1/4
expected number of cells matched = 1/2 + 1/4 +1/4=1
expected number of cells mismatched =__1/4
expected total number of cells = 3/2

Thus the selection rate 7=(1+¥)/(3/2)=5/6 and X /(1+X)=4/5 of the

selected cells will be matches.

Since the decoder knows the state, a match will result in a clear channel

i P T e L R o :
. . T i T e S T I LR L P ]
T B T R R T A L I R S r -

e B T Ty o e s B T el e e R L T & gy el
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£ty
et s

and a mismatch in an erasure. The following rate is achieved.

5 &4 2
R=r I{(X;)Y|S)= == =,
rIXY|S)= =3
which is greater than the independent {or causal) rule capacity C=1/2 calcu-

lated in Example C1.

6. Conclusions

In this paper we have studied the storage rates ‘achievable when defect
state information is provided to one or more of the encoder, decoder and selec-
tor. Information about a cell's sﬁate can be used by the encoder or decoder in
c.dding for either the current and all subsequent cells, or all cells. These two =
cases are referred to as causal or arbitréry use of state information, respec-
tively. The selection rule can be independent, causal or arbitrary, as defined in
Section 2. The table lists the known results acco'rding to what type of state
information is provided to each of the three components. Note that the result of
Theorem 4 applies only for memory cells having two states, and the result of

Theorem 3 applies only to cells consisting of two B3C states, as noted.
When information is provided arbitrarily to both encoder and decoder, the
capacity is given by [3] as pl'flETX) I{(X;Y|S). In achieving this rate, only s; is
&8 .

needed to encode and decode z;. Therefore the same result applies to the
causal case. Also note that a selector can be of no further use in these cases

since its functions can be subsumed by the encoder and decoder.

LI
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DL .
TABLE: Summary of Known Results
n=no state information, i=independent, c=causal, a=arbitrary.
Enc. | Dec. | Selector Capacity Ref.
n n n max XY =
rlz)
i max P(Sew) max {(X;Y[Seu) Thm. 1
c max{g[1-h(e))]1-R(ge;+T22).7[1-h{ex) }* | Thm. 3
a ‘ X YiS
c n max (X:Y|S) [3]
i max F(X;Y|S) Cor. 2
plz) )
) c max I(X;Y[S)tt Thrm. 4 -
»(z)
c n n max (XX 1Y 1
pe e (X1 X153 Y) (1]
i max P(Secw max J(X;..X Y| Sen :
max P )P(zr-znsn) (X1..X)1s):Y|Sev) | Cor.3
c.a c,a njic.a max [{X;Y|S
s 106Y19) [3]
a n n max_I{V;Y)-I(V.S 3
_max [(VN-I(V.S) [2)(3]
tfor a cell consisting of two BSCs.
fifor | | S]] =R.
L ,','7 B :;'_‘ . N 8 " 8 " :—'- B - Lo
. - i i % A Rl Ty BT W e R R ST N A e, B it T B e
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Appendix 1
We show that for any given L, Lg I, I, =0,

R(p) = [pLit(i-p)eti]  [oli+(1-p)Ey

attains its maximum value over O=p=<]l at p=0orp=1

Differentiating, we have

%%: _{;;L1+(1"p)1;2+1]~2 [Il~f2+f1£2~fz[:1}

+ %}Ll—b(l-—p}[,z%*l]ﬂ [1}—-[2]
which is either identically zero or never zero, regardless of p. In the first case,

both p =0 and p=1 attain the meximum K. In the latter case, there is no interior

maximum and so the maximum must oceur at either endpoint.
Appendix 2

We have /(a) = 1—h(ce;+Bsp). Note that J{a) is convex . For 1>a>g, let

| R{a) = [L(cx)-l-l]*jl (o) = {g/ )i (a).
We set the derivative equal to zero and find the second derivative under this con-

dition.
ar _ a2 g =
do - ( Q/ﬂ )](a)'l"'(Q/a) do [(ﬂ)-—D .
d?R _ 8\ 7{ Y\ o d d?
PR (Rg/ 0®)I{c) — (Rg/ o) 2o () +(g/0) e I{e) |
d? ’ |
=(g/ o) oo I{e) > 0. : g

Since the second derivative is positive when the first derivative is zero, there

can be no interior maximum.

- T U . . Lo s % . : oy & [ . Soeoml - [
s T N P SRR X ! g U g el a e . el e e T i 5t .
s - . t WO B N L AL I T T R S e T e N ) ot Sl YT NPT

W
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For 0<a<q, let

E(a) = 91—:—;—”]_ I(a) = (/&) ().

Differentiating by @ we find as above that when the first derivative is zero, the
second is positive. Thus there is no interior maximum in this region either, The

.max'tmizing o must therefore be 0, g, or 1.
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